Skip to main content

Mechanistic Plethora of Biogenetic Nanosynthesis: An Evaluation

  • Chapter
  • First Online:
Exploring the Realms of Nature for Nanosynthesis

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 691 Accesses

Abstract

Nature is more often intrigue yet enrapturing and its cohorts right from microbes, crustaceans, animals to giant tree ferns and cycads are mere mega-assemblies of molecules interacting with each other, screening themselves from the wrath and rigors of the exponentially changing environment thereby displaying themselves as living conglomerate of molecules obeying the precept of thermodynamics. Molecules as and when challenged, dissociated, or hived from their natural milieu liberate energy and that helps to negotiate a chore of nanotransformation. Biological systems were engineered to take up various naturally posed challenges and were given metabolites to circumvent such threats. These molecules are used by the surviving humanity for different purposes of their beneficiation. Broadly categorized as primary and secondary metabolites depending upon their functional chores, they seemingly have proved their prodigality towards nanomaterials synthesis. This fact holds water for all natural cohorts and broadly relies upon the incubation of broth, its seasoning and other pivotal experimental protocols.

“You got to accept Nature the way she is not the way you want her to be…..”

Richard Feynman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadu S, Mohammed AA, Buhari H, Auwal A (2016) An overview of vitamin C as an antistress in poultry. Malays J Vet Res 7:9–22

    Google Scholar 

  • Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–229

    Article  CAS  PubMed  Google Scholar 

  • Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29:205–300

    Article  CAS  PubMed  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa J, Jose-Yacaman M, Troiani H, Santiago P (2004) Size controlled gold nanoparticles formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382

    Article  CAS  Google Scholar 

  • Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Haden ML, Chapman MD (1995) Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2 sequence homology to the aspartic proteases. J Biol Chem 270:19563–19568

    Article  CAS  PubMed  Google Scholar 

  • Asturias JA, Gómez-Bayón N, Arilla MC, Martínez A, Palacios R, Sánchez-Gascón F, Martínez J (1999) Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162:4342–4348

    CAS  PubMed  Google Scholar 

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  CAS  PubMed  Google Scholar 

  • Awwad AM, Salem NM, Abdeen AO (2013) Biosynthesis of silver nanoparticles using loquat leaf extract and its antibacterial activity. Adv Mater Lett 4:338–342

    Article  CAS  Google Scholar 

  • Ayandiran TA, Fawole OO, Adewoye SO, Ogundiran MA (2009) Bioconcentration of metals in the body muscle and gut of Clarias gariepinus exposed to sub-lethal concentrations of soap and detergent effluent. J Cell Anim Biol 3:113–118

    CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (2009) Mycorrhizas-functional processes and ecological impacts. Springer, Berlin

    Book  Google Scholar 

  • Bailey K (1946) Tropomyosin: a new asymmetric protein component of muscle. Nature 157:368–369

    Article  CAS  PubMed  Google Scholar 

  • Bailey K (1948) Tropomyosin: a new asymmetric protein component of the muscle fibril. Biochem J 43:271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballan-Dufrançais C (2002) Localization of metals in cells of pterygote insects. Microsc Res Tech 56:403–420

    Article  PubMed  CAS  Google Scholar 

  • Bates RG, Canham RG (1951) pH of solutions of potassium hydrogen d-tartrate from 0° to 60°C. J Res Natl Bur Stand 47:343–438

    Article  CAS  Google Scholar 

  • Bun-Ya M, Harashima S, Oshima Y (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 12:2958–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Lou W, Vancura A (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Pörtner HO (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev 85:703–727

    PubMed  Google Scholar 

  • Clausen CA, Green F (2003) Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. Int Biodeter Biodegr 51:139–144

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper A (1999) In: Geoffrey A (ed) Protein: a comprehensive treatise, vol 2. JAI Press, Stamford, pp 217–270

    Google Scholar 

  • Dameron CT, Winge DR (1990) Peptide mediated formation of quantum semiconductors. Trends Biotechnol 8:3–6

    Article  CAS  PubMed  Google Scholar 

  • Damjanovic D, Klein N, Li J, Porokhonskyy V (2010) What can be expected from lead-free piezoelectric materials? Funct Mater Lett 3:5–13

    Article  CAS  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8. https://doi.org/10.1186/1477315538

    Article  Google Scholar 

  • Edsall JT (1995) Hsien Wu and the first theory of protein denaturation. Adv Protein Chem 46:1–5

    Article  Google Scholar 

  • Egli D, Domenech J, Selvaraj A, Balamurugan K, Hua H, Capdevila M, Georgiev O, Schaffner W, Atrian S (2006) The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification. Genes Cells 11:647–658

    Article  CAS  PubMed  Google Scholar 

  • Gadda G, Fitzpatrick PF (1998) Biochemical and physical characterization of the active FAD containing form of nitroalkane oxidase from Fusarium oxysporum. Biochemistry 37:6154–6164

    Article  CAS  PubMed  Google Scholar 

  • Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Z (1991) Yeast thioredoxin genes. J Biol Chem 266:1692–1696

    CAS  PubMed  Google Scholar 

  • Gasson MJ, Shearman CA (2003) In: BJB W, Warner PJ (eds) Genetics of lactic acid bacteria, vol 3. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Ghule K, Ghule AV, Liu JY, Ling YC (2006) Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicerarietinum L.) extract and HAuCl4 × 3H2O: a green biogenic approach. J Nanosci Nanotechnol 6:3746–3751

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, Collinson LP, Roe JH, Dawes IW (1996a) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996b) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35

    Article  CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisae. FEMS Microbiol Rev 27:35–64

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  PubMed  Google Scholar 

  • Holwill MEJ, Silvester NR (1967) Thermodynamic aspects of flagellar activity. J Exp Biol 47:249–265

    CAS  PubMed  Google Scholar 

  • http://www.lactic.com/index.php/lacticacid (2009)

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115

    Article  CAS  Google Scholar 

  • Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365

    Article  CAS  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama KI, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  CAS  PubMed  Google Scholar 

  • Jadhav SH, Sarkar SN, Patil RD, Tripathi HC (2007) Effects of sub-chronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Contam Toxicol 53:667–677

    Article  CAS  PubMed  Google Scholar 

  • Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood- rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K (2010a) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342:68–72

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K (2010b) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B Biointerfaces 75:330–334

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010c) Synthesis of BaTiO3 nanoparticles: a new sustainable green approach. Integr Ferroelectr 117:49–54

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2010d) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1:P110–P117

    Article  Google Scholar 

  • Jha AK, Prasad K (2011) Biosynthesis of gold nanoparticles using bael (Aegle marmelos) leaf: mythology met technology. Int J Green Nanotechnol Phys Chem 3:92–97

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2012) Banana fly (Drosophila sp.) synthesizes CdS nanoparticles! J Bionanosci 6:99–103

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2013a) Can animals too negotiate nano transformations? Adv Nano Res 1:35–42

    Article  Google Scholar 

  • Jha AK, Prasad K (2013b) Rose (Rosa sp.) petals assisted green synthesis of gold nanoparticles. J Bionanosci 7:245–250

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2014a) Green synthesis and characterization of BaFe0.5Nb0.5O3 nanoparticles. J Chin Adv Mater Soc 2:294–302

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2014b) Green synthesis of silver nanoparticles and its activity on SiHa cervical cancer cell line. Adv Mater Lett 5:501–505

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2014c) Synthesis of silver nanoparticles employing fish processing discard: an eco-amenable approach. J Chin Adv Mater Soc 2:179–185

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2015) Facile green synthesis of metal and oxide nanoparticles using papaya juice. J Bionanosci 9:311–314

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2016a) Green synthesis and antimicrobial activity of silver nanoparticles onto cotton fabrics: an amenable option for textile industries. Adv Mater Lett 7:42–46

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2016b) Aquatic fern (Azolla sp.) assisted synthesis of gold nanoparticles. Int J Nanosci 15:1650008–1650012

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2016c) Synthesis of ZnO nanoparticles from goat slaughter waste for environmental protection. Int J Curr Eng Technol 6:147–151

    Google Scholar 

  • Jha AK, Prasad K (2018) Nanomaterials from biological and pharmaceutical wastes – a step towards environmental protection. Mater Today: Proc, in press

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2007) Microbe mediated nano transformation: cadmium. Nano 2:239–242

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4:17–21

    Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009a) Biosynthesis of Sb2O3 nanoparticles: a low cost green approach. Biotechnol J 4:1582–1585

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009b) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71:226–229

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Kumar V, Prasad K (2009c) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25:1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Kumar V, Prasad K (2011) Biosynthesis of metal and oxide nanoparticles using orange juice. J Bionanosci 5:162–166

    Article  CAS  Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    Article  CAS  PubMed  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin assisted synthesis of silver and gold nanaoparicles;a novel biological approach. J Nanopart Res 11:1075–1085

    Article  CAS  Google Scholar 

  • Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Kochergina LA, Volkov AV, Krutov DV, Krutova ON (2006) The standard enthalpies of formation of citric and tartaric acids and their dissociation products in aqueous solutions. Russ J Phys Chem A 80:1029–1033

    Article  CAS  Google Scholar 

  • Kondo N, Isobe M, Imai K, Goto T, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unitpeptide of cadmium-binding peptides induced in a fission yeast, Schizosaccharomyces pombe. Tetrahedron Lett 24:925–928

    Article  CAS  Google Scholar 

  • van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Sahay LK, Jha AK, Prasad K (2013) Synthesis and characterization of nanocrystalline Al0.5Ag0.5TiO3 powder. Adv Nano Res 1:211–218

    Article  Google Scholar 

  • Kumar S, Jha AK, Prasad K (2015) Green synthesis and characterization of (Ag1/2Al1/2)TiO3 nanoceramics. Mater Sci-Pol 33:59–72

    Article  CAS  Google Scholar 

  • Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A, Hacioglu E, Kwak GH, Koc A, Kim HY, Gladyshev VN (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284:4354–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewinska A, Bartosz G (2007) Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic Res 41:580–590

    Article  CAS  PubMed  Google Scholar 

  • Li S, Qui L, Shen Y, Xie A, Yu X, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147

    Article  CAS  PubMed  Google Scholar 

  • Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of cu(I) into phytochelatins. Biochem J 307:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A 85:8815–8819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra RK, Mulchandani P, Hunter TC (1994) Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Commun 200:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Mizushima S (1990) Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol Microbiol 4:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel-Deville F, Fauvel F, Morel P (1998) Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei. Microbiology 144:2873–2883

    Article  PubMed  Google Scholar 

  • Morrison RT, Boyd RN (1983) Advanced organic chemistry. Allyn and Bacon, Boston

    Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J Biochem 93:661–664

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Długónski J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Frycie A, Słaba M, Długónski J (2007) Enhancement of emulsifier production by Curvularia lunata in cadmium,zinc and lead presence. Biometals 20:797–805

    Article  CAS  PubMed  Google Scholar 

  • Paraszkiewicz K, Bernat P, Naliwajski M, Długónski J (2010) Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 192:135–141

    Article  CAS  PubMed  Google Scholar 

  • Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–6373

    Article  CAS  PubMed  Google Scholar 

  • Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental and nutritive stresses. Enzym Microb Technol 26:737–742

    Article  CAS  Google Scholar 

  • Perego P, Howell SB (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318

    Article  CAS  PubMed  Google Scholar 

  • Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles Article ID 963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135

    CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    Article  CAS  PubMed Central  Google Scholar 

  • Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation. Indian J Phys 84:1355–1360

    Article  CAS  Google Scholar 

  • Prasad K, Priyanka ANK, Chandra KP, Kulkarni AR (2014) Dielectric relaxation in Ba(Y1/2Nb1/2)O3-BaTiO3 ceramics. J Mater Sci Mater Electron 25:4856–4866

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  PubMed  Google Scholar 

  • Rao KJ, Paria S (2013) Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater Res Bull 48:628–634

    Article  CAS  Google Scholar 

  • Rao ML, Savithramma N (2011) Biological synthesis of silver nanoparticles using Svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J Pharm Sci Res 3:1117–1121

    Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raut WR, Lakkakula JR, Kolekar NS, Mendhulkar VD, Kashid SB (2009) Phytosynthesis of silver nanoparticles using Gliricidia sepium (Jacq.). Curr Nanosci 5:117–121

    Article  CAS  Google Scholar 

  • Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhhizal mushroom Tricholoma crassum (BERK.) SACC: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Biostruct 6:1289–1299

    Google Scholar 

  • Robinson VL, Buckler DR, Stock AM (2000) A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol 7:626–633

    Article  CAS  PubMed  Google Scholar 

  • Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    CAS  PubMed  Google Scholar 

  • Sathishkumar M, Krishnamurthy S, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101:7958–7965

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner W (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano LM (2008) Oxidative stress response in Lactobacillus plantarum WCFS1: a functional genomics approach. Ph.D. Thesis, Wageningen University and Research Centre, The Netherlands

    Google Scholar 

  • Shanti SS, Karl JD (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  Google Scholar 

  • Shareck J, Choi Y, Lee B, Miguez CB (2004) Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol 24:155–208

    Article  CAS  PubMed  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their activity. Dig J Nanomater Biostruct 5:483–489

    Google Scholar 

  • Stuart GW, Searle PF, Chen HY, Brinster RL, Palmiter RD (1984) A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A 81:7318–7322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganya T, Senthilkumar S, Deepa K, Muralidharan J, Sasikumar P, Muthusamy N (2016) Metal toxicosis in poultry – a review. Int J Sci Environ Technol 5:515–524

    Google Scholar 

  • Sundquist AR, Fahey RC (1989) Evolution of antioxidant mechanisms: thiol-dependent peroxidases and thioltransferase among procaryotes. J Mol Evol 29:429–435

    Article  CAS  PubMed  Google Scholar 

  • Tamás MJ, Martinoia E (2005) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg

    Google Scholar 

  • Tortosa P, Dubnau D (1999) Competence for transformation: a matter of taste. Curr Opin Microbiol 2:588–592

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Harsh NSK, Gupta N (2007) Fungal treatment of industrial effluents: a mini review. Life Sci J 4:78–81

    CAS  Google Scholar 

  • Ulla AJ, Patrick AWV, Ulla SL, Roger DF (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567

    Article  Google Scholar 

  • Urban PL, Kuthan RT (2004) Application of probiotics in the xenobiotic detoxification therapy. Nukleonika 49(suppl 1):S43–S45

    CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vina J (ed) (1990) Glutathione: metabolism and physiological functions. CRC Press, Boca Raton

    Google Scholar 

  • Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349

    Article  CAS  PubMed  Google Scholar 

  • Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    Article  CAS  PubMed  Google Scholar 

  • Yadav N, Khandelwal S (2006) Effect of Picroliv on cadmium-induced hepatic and renal damage in the rat. Hum Exp Toxicol 25:581–591

    Article  CAS  PubMed  Google Scholar 

  • Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, Georgiev O, Schaffner W (2006) Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res 34:4866–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, A.K., Prasad, K. (2018). Mechanistic Plethora of Biogenetic Nanosynthesis: An Evaluation. In: Prasad, R., Jha, A., Prasad, K. (eds) Exploring the Realms of Nature for Nanosynthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99570-0_1

Download citation

Publish with us

Policies and ethics