Skip to main content

The Algorithmic Theory of Laws

  • Chapter
  • First Online:
Idealization and the Laws of Nature

Part of the book series: SpringerBriefs in Philosophy ((BRIEFSPHILOSOPH))

  • 281 Accesses

Abstract

Chapter 4 brings together the insights of the first three chapters, and argues that the best way to understand ideal laws is to think of them as rules or algorithms for compressing empirical data. Idealization is explained as a form of lossy compression. Lossy compression is tolerated in scientific theories because of predictive redundancy in our theories. Idealizations in scientific theories and their application are accounted for as compression artefacts left over from the lossy compression. A number of possible objections to this explanation are considered and responses given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, N., R. Khardon, and T. Zuegmann. 2001. Algorithmic learning theory. Washington: Springer.

    Book  Google Scholar 

  • Acharya, T., and P. Tsai. 2005. JPEG2000 standard for image compression: concepts, algorithms and VLSI architectures. New Jersey: Wiley-Interscience.

    Book  Google Scholar 

  • Armstrong, D. 1983. What is a law of nature?. Cambridge: Cambridge University Press.

    Google Scholar 

  • Azatoth. 2011. Felis silvestris silvestris small gradual decrease of quality.png. Photo. CC BY 3.0, Oct 3. https://creativecommons.org/licenses/by/3.0/legalcode.

  • Banks, E. 2004. The philosophical roots of Ernst Mach’s economy of thought. Synthese 139 (1): 23–53.

    Article  Google Scholar 

  • Barrow, J. 1991. Theories of everything. Oxford: Oxford University Press.

    Google Scholar 

  • Bogen, J., and J. Woodward. 1988. Saving the phenomena. The Philosophical Review 97 (3): 303–352.

    Article  Google Scholar 

  • Braddon-Mitchell, D. 2001. Lossy Laws. Nous 35 (2): 260–277.

    Article  Google Scholar 

  • Chaitin, G. 1987. Algorithmic information theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chaitin, G. 2005. Meta maths—The quest for omega. London: Atlanta Books.

    Google Scholar 

  • Cohen, C., and C. Callender. 2009. A better best system of lawhood. Philosophical Studies 145 (1): 1–34.

    Article  Google Scholar 

  • Copeland, J., and D. Proudfoot. 2005. Turing and the computer. In Alan Turing’s automatic computing engine, ed. J. Copeland, 107–148. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Davies, P. 1995. Algorithmic compressibility, fundamental and phenomenological laws. In Laws of nature: essays on the philosophical, scientific and historical dimensions, ed. F. Weinert, 248–267. Berlin: Walter de Gruyter & Co.

    Google Scholar 

  • Earman, J. 1984. Laws of nature: The empiricist challenge. In D.M. Armstrong, ed. R.J. Bogden, 191–223. Dordrecht: Reidel.

    Google Scholar 

  • Einstein, A. 1933. On the method of theoretical physics—The Herbert Spencer lecture. Performed by Albert Einstein. University of Oxford. June 10.

    Google Scholar 

  • Feynman, R. 1963. Lectures on physics, vol. 1. Reading: Addison-Wesley.

    Google Scholar 

  • Floridi, L. 2010. Information: A very short introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gell-Mann, M. 1987. Simplicity and complexity in the description of nature. Performed by M. Gell-Mann. The Caltech Associate, Pasadena. October 1.

    Google Scholar 

  • Giere, R. 1988. Explaining science: A cognitive approach. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Grunwald, P., and P. Vitanyi. 2008. Algorithmic complexity. In Philosophy of information, ed. P. Adriaans and J. van Benthem, 289–328. Amsterdam: Elsevier.

    Google Scholar 

  • Harris, T. 2003. Data models and the acquisition and manipulation of data. Philosophy of Science 70: 1508–1517.

    Article  Google Scholar 

  • Kolmogorov, A. 1965. Three approaches to the definition of the quantity of information. Problems of Information Transmission 1 (1): 1–7.

    Google Scholar 

  • Landauer, R. 1996. The physical nature of information. Physics Letters A 217: 188–193.

    Article  Google Scholar 

  • Langley, P., G. Bradshaw, H. Simon, and J. Zytow. 1987. Scientific discovery: Computational explorations of the creative Process. Cambridge: MIT Press.

    Google Scholar 

  • Lewis, D. 1973. Counterfactuals. Oxford: Blackwell.

    Google Scholar 

  • Lewis, D. 1983. New work for a theory of universals. Australian Journal of Philosophy 61 (4): 343–377.

    Article  Google Scholar 

  • Lewis, D. 1986. Causation. In Philosophical papers, vol. II, ed. D. Lews, 159–213. Oxford: Oxford University Press.

    Google Scholar 

  • Lewis, D. 1994. Humean supervenience debugged. Mind 103 (412): 473–490.

    Article  Google Scholar 

  • Lieb, E., and J. Yngvason. 1999. The physics and the mathematics of the second law of thermodynamics. Physics Reports 310: 1–96.

    Article  Google Scholar 

  • Lloyd, S. 2006. Programming the universe: A quantum computer scientist takes on the cosmos. New York: Alfred Knopf.

    Google Scholar 

  • Loewer, B. 1996. Humean supervenience. Philosophical Topics 24 (1): 101–127.

    Article  Google Scholar 

  • Loewer, B. 2007. Laws and natural properties. Philosophical Topics 35 (1 and 2): 313–328.

    Google Scholar 

  • Lynch, M. 1988. The externalized retina: Selection and mathematization in the visual documentation of objects in the life sciences. Human Studies 11 (2/3): 201–234.

    Google Scholar 

  • Mach, E. 1883 (1960). Science of mechanics. Illinois: Open Court.

    Google Scholar 

  • Mach, E. 1894 (1943). Popular scientific lectures. Illinois: Open Court.

    Google Scholar 

  • McAllister, J. 1997. Phenomena and patterns in data sets. Erkenntnis 47 (2): 217–228.

    Article  Google Scholar 

  • McAllister, J. 2003. Algorithmic randomness in empirical data. Studies in the History and Philosophy of Science 34: 633–646.

    Article  Google Scholar 

  • McAllister, J. 2010. The ontology of patterns in empirical data. Philosophy of Science 77 (5): 804–814.

    Article  Google Scholar 

  • Nelson, M. 1991. The data compression book. New York: Henry and Holt.

    Google Scholar 

  • Pennebaker, W., and J. Mitchell. 1993. JPEG: Still image data compression standard. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Reichenbach, H. 1947. Elements of Symbolic Logic. New York: The Macmillan Company.

    Google Scholar 

  • Roberts, J. 2008. The law-governed universe. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Salomon, D. 2008. A concise introduction to data compression. London: Springer.

    Book  Google Scholar 

  • Solomonoff, R. 1964a. A formal theory of inductive inference: Part I. Information and Control 7 (1): 1–22.

    Article  Google Scholar 

  • Solomonoff, R. 1964b. A formal theory of inductive inference: Part II. Information and Control 7 (2): 224–254.

    Article  Google Scholar 

  • Suppes, P. 1962. Models of data. In Logic, methodology and philosophy of science: Proceedings of the 1960 international congress, ed. E. Nagel, P. Suppes, and A. Tarski, 252–261. Stanford: Stanford University Press.

    Google Scholar 

  • Taylor, B. 1993. On natural properties in metaphysics. Mind 102 (405): 81–100.

    Article  Google Scholar 

  • Teller, P. 2010. Saving the phenomena today. Philosophy of Science 77 (5): 815–826.

    Article  Google Scholar 

  • Tomkow, T. 2013. “The Computational Theory of the Laws of Nature.” Tomkow.com. September 1. http://tomkow.typepad.com/tomkowcom/2013/09/the-computational-theory-of-natural-laws.html.

  • Twardy, C., S. Gardner, and D. Dowe. 2005. Empirical data sets are algorithmically compressible: Reply to McAllister? Studies in the History and Philosophy of Science 36: 391–402.

    Article  Google Scholar 

  • van Fraassen, B. 1989. Laws and symmetry. Oxford: Clarenden Press.

    Book  Google Scholar 

  • Wheeler, B. 2016. Simplicity, language-dependency and the best system account of laws. Theoria: An International Journal for Theory, History and Foundations of Science 31 (2): 189–206.

    Google Scholar 

  • Woodward, J. 1989. Data and phenomena. Synthese 79 (3): 393–472.

    Article  Google Scholar 

  • Woodward, J. 2014. Simplicity in the best systems account of laws of nature. The British Journal for the Philosophy of Science 65 (1): 91–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Wheeler .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wheeler, B. (2018). The Algorithmic Theory of Laws. In: Idealization and the Laws of Nature. SpringerBriefs in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-99564-9_4

Download citation

Publish with us

Policies and ethics