Skip to main content

Electron Transport in Ferromagnetic Nanostructures

  • Chapter
  • First Online:
Atomic- and Nanoscale Magnetism

Part of the book series: NanoScience and Technology ((NANO))

  • 1223 Accesses

Abstract

The proposal of logic- and memory devices based on magnetic domain-wall motion in nanostructures created a great demand on the understanding of the dynamics of domain walls. We describe the controlled creation and annihilation of domain walls by Oersted-field pulses as well as their internal dynamics during motion. Electric measurements of the magnetoresistance are utilized to identify permanent- or temporal creation and continuous motion of domain walls initiated by nanosecond short field pulses in external magnetic fields. The injection of domain walls into nanowires with control of their magnetic pattern (transverse or vortex), their type (head-to-head or tail-to-tail magnetization orientation) and their sense of magnetization rotation (clockwise or counter clockwise chirality) is reliably achieved. Influencing the creation process of consecutively created domain walls to obtain multiple walls inside one wire or to mutually annihilate the walls is found to be possible by changes of magnetic field parameters. The time structure of the creation process is analysed by time-resolved transmission X-ray microscopy. After complete formation wall transformations are observed above a critical driving field known as the Walker breakdown. Internal excitations of vortex domain walls are also found in low field motion. A strong interplay between internal dynamics and the macroscopic motion is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Named after L. R. Walker based on unpublished calculations on domain walls that have been redone and published in [38].

  2. 2.

    Actual domain wall widths in nanowires are about \(3\lambda \) as calculated in [39].

  3. 3.

    In [56] a wrong numerical value \(\lambda =0.13\) nm was written on page 2 line 78. Still the calculation had been carried out with the correct value of \(\lambda =0.27\) nm in the publication.

References

  1. M.H. Kryder, C.S. Kim, IEEE Trans. Magn. 45, 3406 (2009)

    Article  ADS  Google Scholar 

  2. Everspin Technolgies - The MRAM company, http://www.everspin.com as of (2014)

  3. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  4. D.H. Smith, IEEE Trans. Magn. 1, 281 (1965)

    Article  ADS  Google Scholar 

  5. H. Banks, The New York Times, September 20th (1981)

    Google Scholar 

  6. J.-S. Kim, M.-A. Mawass, A. Bisig, B. Krüger, R.M. Reeve, T. Schulz, F. Büttner, J. Yoon, C.-Y. You, M. Weigand, H. Stoll, G. Schütz, H.J.M. Swagten, B. Koopmans, S. Eisebitt, M. Kläui, Nat. Commun. 5, 3429 (2014)

    Google Scholar 

  7. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005)

    Google Scholar 

  8. R. Mattheis, S. Glathe, M. Diegel, U. Hübner, J. Appl. Phys. 111, 113920 (2012)

    Google Scholar 

  9. K. Zeissler, S.K. Walton, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen, W.R. Branford, Sci. Rep. 3, 1252 (2013)

    Google Scholar 

  10. A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.-H. Yang, L. Thomas, S.P.P. Parkin, Nat. Phys. 9, 505 (2013)

    Google Scholar 

  11. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)

    Google Scholar 

  12. G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nanowires Nat. Mater. 4, 741 (2005)

    Google Scholar 

  13. M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 96, 197207 (2006)

    Google Scholar 

  14. G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H. Kim, P. Fischer, Phys. Rev. Lett. 98, 187202 (2007)

    Google Scholar 

  15. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y.B. Bazaliy, S.S.P. Parkin, Phys. Rev. Lett. 98, 037204 (2007)

    Google Scholar 

  16. L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Science 330, 1810 (2010)

    Article  ADS  Google Scholar 

  17. E. Saitoh, H. Miyajima, T. Yamaoka, G. Tatara, Nature 432, 203 (2004)

    Article  ADS  Google Scholar 

  18. L. Bocklage, B. Krüger, R. Eiselt, M. Bolte, P. Fischer, G. Meier, Phys. Rev. B 78, 180405(R) (2008)

    Google Scholar 

  19. A. Bisig, J. Rhensius, M. Kammerer, M. Curcic, H. Stoll, G. Schütz, B. Van Waeyenberge, K.W. Chou, T. Tyliszczak, L.J. Heyderman, S. Krzyk, A. von Bieren, M. Kläui, Appl. Phys. Lett. 96, 152506 (2010)

    Article  ADS  Google Scholar 

  20. M. Kläui, P.-O. Jubert, R. Allensbach, A. Bischof, J.A.C. Bland, G. Faini, U. Rüdiger, C.A.F. Vaz, L. Vila, C. Vouille, Phys. Rev. Lett. 95, 026601 (2005)

    Google Scholar 

  21. M. Kläui, H. Ehrke, U. Rüdiger, T. Kasama, R.E. Dunin-Borkowski, D. Backes, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, G. Faini, E. Cambril, W. Wernsdorfer, Appl. Phys. Lett. 87, 102509 (2005)

    Article  ADS  Google Scholar 

  22. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 97, 207205 (2006)

    Google Scholar 

  23. P. Lendecke, Verlag Dr. Hut, München (2010)

    Google Scholar 

  24. C. Wuth, L. Kolbe, G. Meier, J. Appl. Phys. 114, 103901 (2013)

    Google Scholar 

  25. C.H. Marrows, G. Meier, J. Phys.: Cond. Mat. 24, 020301 (2012)

    Google Scholar 

  26. P.-E. Weiss, Comptes rendus de l’Académie des sciences 143, 1136 (1906)

    Google Scholar 

  27. L. Landau, E. Lifshits, Phys. Zeitsch. der Sow. 8, 153 (1935)

    Google Scholar 

  28. S. Middlehoek, J. Appl. Phys. 34, 1054 (1963)

    Google Scholar 

  29. E.E. Huber Jr., D.O. Smith, J.B. Goodenough, J. Appl. Phys. 29, 294 (1958)

    Google Scholar 

  30. Y. Nakatani, A. Thiaville, J. Milat, J. Magn. Magn. Mater. 290, 750 (2005)

    Google Scholar 

  31. B. Krüger, Current-Driven Magnetization Dynamics: Analytical Modeling and Numerical Simulation (Universität Hamburg, 2011)

    Google Scholar 

  32. D. Petit, A.-V. Jausovec, D. Read, R.P. Cowburn, J. Appl. Phys. 103, 114307 (2008)

    Google Scholar 

  33. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Google Scholar 

  34. B. Krüger, D. Pfannkuche, M. Bolte, G. Meier, U. Merkt, Phys. Rev. B 75, 054421 (2007)

    Google Scholar 

  35. J.C. Slonczewski, J. Appl. Phys. 44, 1759 (1973)

    Google Scholar 

  36. A.A. Thiele, J. Appl. Phys. 45, 377 (1974)

    Google Scholar 

  37. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Google Scholar 

  38. J.F. Dillon Jr., published in Treatise on Magnetism, III, 450 (Academic, New York, 1963)

    Google Scholar 

  39. K. Ramstöck, W. Hartung, A. Hubert, Phys. Stat. Sol. (a) 155, 505 (1996)

    Article  ADS  Google Scholar 

  40. L. Bocklage, B. Krüger, T. Matsuyama, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. Lett. 103, 197204 (2009)

    Google Scholar 

  41. M. Hayashi, Current Driven Dynamics of Magnetic Domain Walls in Permalloy Nanowires (Stanford University, 2006)

    Google Scholar 

  42. W. Döring, Z. Naturforsch. 3a, 373 (1948)

    Google Scholar 

  43. L. Bocklage, B. Krüger, P. Fischer, G. Meier, Phys. Rev. B 81, 054404 (2010)

    Google Scholar 

  44. D.J. Clarke, O.A. Tretiakov, G.-W. Chern, Ya B. Bazaliy, O. Tchernyshyov, Phys. Rev. B 78, 134412 (2008)

    Google Scholar 

  45. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Nat. Phys. 3, 21 (2007)

    Google Scholar 

  46. J.L. Prieto, M. Muñoz, E. Martinez, Phys. Rev. B 83, 104425 (2011)

    Google Scholar 

  47. L. O’Brien, D. Read, D. Petit, R.B. Cowburn, J. Phys.: Cond. Mat. 24, 024222 (2012)

    Google Scholar 

  48. K. Sentker, F.-U. Stein, L. Bocklage, T. Matsuyama, M.-Y. Im, P. Fischer, G. Meier, Appl. Phys. Lett. 104, 172404 (2014)

    Article  ADS  Google Scholar 

  49. L. Bocklage, F.-U. Stein, M. Martens, T. Matsuyama, G. Meier, Appl. Phys. Lett. 103, 092406 (2013)

    Article  ADS  Google Scholar 

  50. H. Ade, H. Stoll, Nat. Mater. 8, 281 (2009)

    Google Scholar 

  51. H. Stoll, A. Puzic, B. van Waeyenberge, P. Fischer, J. Raabe, M. Buess, T. Haug, R. Höllinger, C. Back, D. Weiss, G. Denbeaux, Appl. Phys. Lett. 84, 3328 (2004)

    Article  ADS  Google Scholar 

  52. H. Stoll, M. Noske, M. Weigand, K. Richter, B. Krüger, R.M. Reeve, M. Hänze, C.F. Adolff, F.-U. Stein, G. Meier, M. Kläui, G. Schütz, Front. Phys. 3, 26 (2015)

    Google Scholar 

  53. X. Jiang, L. Thomas, R. Moriya, S.S.P. Parkin, Nano Lett. 11, 96 (2011)

    Article  ADS  Google Scholar 

  54. F.-U. Stein, L. Bocklage, M. Weigand, G. Meier, Phys. Rev. B 89, 024423 (2014)

    Google Scholar 

  55. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S.S.P. Parkin, Nature 443, 197 (2006)

    Article  ADS  Google Scholar 

  56. F.-U. Stein, L. Bocklage, M. Weigand, G. Meier, Sci. Rep. 3, 1737 (2013)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Ulrich Merkt for continuous support and fruitful discussions over many years. We thank MarkusWeigand, Hermann Stoll, and Gisela Schütz, Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany as well as Mi-Young Im and Peter Fischer, LBNL Berkeley, CA,USA for excellent, long-standing cooperation. We acknowledge financial support from the Deutsche Forschungsgemeinschaft via SFB 668 ’Magnetism from the Single Atom to the Nanostructure’, via Graduiertenkolleg 1286 ’Functional Metal-Semiconductor Hybrid Systems’, and via excellence cluster ’The Hamburg Centre for Ultrafast Imaging - Structure, Dynamics and Control of Matter on the Atomic Scale’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stein, FU., Meier, G. (2018). Electron Transport in Ferromagnetic Nanostructures. In: Wiesendanger, R. (eds) Atomic- and Nanoscale Magnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99558-8_18

Download citation

Publish with us

Policies and ethics