Skip to main content

Imaging the Interaction of Electrical Currents with Magnetization Distributions

  • Chapter
  • First Online:
Atomic- and Nanoscale Magnetism

Abstract

About a decade ago, the understanding of the interaction mechanisms between electrical currents and magnetic objects like domain walls or vortices was still in its infancy. Both, theory and experiments were moving on uncharted grounds, with new and many times contradicting results being published from different groups at increasing pace. Previously, only the Oersted field from a current was available to manipulate the magnetic state of a system. The latter was extensively used in magnetic storage devices, starting from the early core memory up to the write heads of the latest hard drive technologies based on perpendicular recording and tunnel-magnetoresistive (TMR) readout sensors, to alter the state of the magnetic bits. Even early prototypes of magnetic random-access memory (MRAM) used the Oersted field for writing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Grollier, D. Lacour, V. Cros, A. Hamzic, A. Vaurès, A. Fert, D. Adam, G. Faini, J. Appl. Phys. 92(8), 4825 (2002)

    Google Scholar 

  2. M. Kläui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, Appl. Phys. Lett. 83(1), 105 (2003)

    Article  ADS  Google Scholar 

  3. M. Tsoi, R. Fontana, S. Parkin, Appl. Phys. Lett. 83(13), 2617 (2003)

    Article  ADS  Google Scholar 

  4. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92(7), 077205 (2004)

    Google Scholar 

  5. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320(5873), 190 (2008)

    Article  ADS  Google Scholar 

  6. L. Berger, J. Appl. Phys. 55, 1954 (1984)

    Google Scholar 

  7. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Google Scholar 

  8. S. Zhang, Z. Li, Phys. Rev. Lett. 93(12), 127204 (2004)

    Google Scholar 

  9. G. Tatara, H. Kohno, Phys. Rev. Lett. 92(8), 086601 (2004)

    Google Scholar 

  10. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69(6), 990 (2005)

    Article  ADS  Google Scholar 

  11. B. Krüger, M. Najafi, S. Bohlens, R. Frömter, D.P.F. Möller, D. Pfannkuche, Phys. Rev. Lett. 104(7), 077201 (2010)

    Google Scholar 

  12. S. Rößler, S. Hankemeier, B. Krüger, F. Balhorn, R. Frömter, H.P. Oepen, Phys. Rev. B 89, 174426 (2014)

    Google Scholar 

  13. L.V. Dzemiantsova, M. Karolak, F. Lofink, A. Kubetzka, B. Sachs, K. von Bergmann, S. Hankemeier, T.O. Wehling, R. Frömter, H.P. Oepen, A.I. Lichtenstein, R. Wiesendanger, Phys. Rev. B 84, 205431 (2011)

    Google Scholar 

  14. S. Rößler, Magnetic imaging of static and dynamic states in systems of reduced dimensions. (Shaker, Aachen, 2015)

    Google Scholar 

  15. H.P. Oepen, R. Frömter, Handbook of Magnetism and Advanced Magnetic Materials (Wiley, New York, 2007). Chap. Scanning Electron Microscopy with Polarization Analysis

    Google Scholar 

  16. R. Frömter, S. Hankemeier, H.P. Oepen, J. Kirschner, Rev. Sci. Instrum. 82(3), 033704 (2011)

    Google Scholar 

  17. F. Lofink, S. Hankemeier, R. Frömter, J. Kirschner, H.P. Oepen, Rev. Sci. Instrum. 83, 023708 (2012)

    Google Scholar 

  18. R. Frömter, F. Kloodt, S. Rößler, A. Frauen, P. Staeck, D.R. Cavicchia, L. Bocklage, V. Röbisch, E. Quandt, H.P. Oepen, Appl. Phys. Lett. 108, 142401 (2016)

    Article  ADS  Google Scholar 

  19. B. Krüger, A. Drews, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. B 76(22), 224426 (2007)

    Google Scholar 

  20. S. Barman, G.P. Srivastava, J. Appl. Phys. 101(12), 123507 (2007)

    Google Scholar 

  21. S. Hankemeier, K. Sachse, Y. Stark, R. Frömter, H.P. Oepen, Appl. Phys. Lett. 92(24), 242503 (2008)

    Article  ADS  Google Scholar 

  22. B. Beyersdorff, S. Hankemeier, S. Rößler, Y. Stark, G. Hoffmann, R. Frömter, H.P. Oepen, B. Krüger, Phys. Rev. B 86(18), 184427 (2012)

    Google Scholar 

  23. L. Heyne, J. Rhensius, D. Ilgaz, A. Bisig, U. Rüdiger, M. Kläui, L. Joly, F. Nolting, L.J. Heyderman, J.U. Thiele, F. Kronast, Phys. Rev. Lett. 105, 187203 (2010)

    Google Scholar 

  24. S. Pollard, L. Huang, K. Buchanan, D. Arena, Y. Zhu, Nat. Commun. 3, 1028 (2012)

    Google Scholar 

  25. K. Sekiguchi, K. Yamada, S.M. Seo, K.J. Lee, D. Chiba, K. Kobayashi, T. Ono, Phys. Rev. Lett. 108, 017203 (2012)

    Google Scholar 

  26. G. Tatara, P. Entel, Phys. Rev. B 78, 064429 (2008)

    Google Scholar 

  27. K.J. Lee, M. Stiles, H.W. Lee, J.H. Moon, K.W. Kim, S.W. Lee, Phys. Rep. 531(2), 89 (2013)

    Google Scholar 

  28. D. Claudio-Gonzalez, A. Thiaville, J. Miltat, Phys. Rev. Lett. 108, 227208 (2012)

    Google Scholar 

  29. V. Volkov, Y. Zhu, M.D. Graef, Micron 33(5), 411 (2002)

    Article  Google Scholar 

  30. R.E. Dunin-Borkowski, T. Kasama, A. Wei, S.L. Tripp, M.J. Hÿtch, E. Snoeck, R.J. Harrison, A. Putnis, Microsc. Res. Techn. 64(5–6), 390 (2004)

    Google Scholar 

  31. A. Drews, Fast Micromagnetic Simulator for Computations on Cpu and Graphics Processing Unit (gpu) (2014)

    Google Scholar 

  32. M.J. Donahue, D.G. Porter, Interagency Report NISTIR 6376 (National Institute of Standards and Technology, MD, 1999)

    Google Scholar 

  33. R. Frömter, H. Stillrich, C. Menk, H.P. Oepen, Phys. Rev. Lett. 100, 207202 (2008)

    Google Scholar 

  34. M. Seifert, L. Schultz, R. Schäfer, S. Hankemeier, R. Frömter, H.P. Oepen, V. Neu, New J. Phys. 19(3), 033002 (2017)

    Article  ADS  Google Scholar 

  35. M. Seifert, L. Schultz, R. Schäfer, V. Neu, S. Hankemeier, S. Rößler, R. Frömter, H.P. Oepen, New J. Phys. 15(1), 013019 (2013)

    Article  ADS  Google Scholar 

  36. J. Jelli, K.M. Lebecki, S. Hankemeier, R. Frömter, H.P. Oepen, U. Nowak, IEEE Trans. Magn. 49(3), 1077 (2013)

    Article  ADS  Google Scholar 

  37. S. Hankemeier, R. Frömter, N. Mikuszeit, D. Stickler, H. Stillrich, S. Pütter, E.Y. Vedmedenko, H.P. Oepen, Phys. Rev. Lett. 103(14), 147204 (2009)

    Google Scholar 

  38. F. Lofink, A. Philippi-Kobs, M.R. Rahbar Azad, S. Hankemeier, G. Hoffmann, R. Frömter, H.P. Oepen, Phys. Rev. Appl. 8, 024008 (2017)

    Google Scholar 

  39. S. Hankemeier, A. Kobs, R. Frömter, H.P. Oepen, Phys. Rev. B 82, 064414 (2010)

    Google Scholar 

  40. A. Hubert, R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 2009)

    Google Scholar 

  41. W.K. Hiebert, A. Stankiewicz, M.R. Freeman, Phys. Rev. Lett. 79(6), 1134 (1997)

    Article  ADS  Google Scholar 

  42. N.O. Urs, B. Mozooni, P. Mazalski, M. Kustov, P. Hayes, S. Deldar, E. Quandt, J. McCord, AIP Adv. 6(5), 055605 (2016)

    Google Scholar 

  43. T. Eggebrecht, M. Möller, J.G. Gatzmann, N. Rubiano da Silva, A. Feist, U. Martens, H. Ulrichs, M. Münzenberg, C. Ropers, S. Schäfer, Phys. Rev. Lett. 118, 097203 (2017)

    Google Scholar 

  44. M. Kuwahara, Y. Nambo, K. Aoki, K. Sameshima, X. Jin, T. Ujihara, H. Asano, K. Saitoh, Y. Takeda, N. Tanaka, Appl. Phys. Lett. 109(1), 013108 (2016)

    Article  ADS  Google Scholar 

  45. Y. Acremann, V. Chembrolu, J.P. Strachan, T. Tyliszczak, J. Stöhr, Rev. Sci. Instrum. 78, 014702 (2007)

    Google Scholar 

  46. G.S. Plows, W.C. Nixon, J. Phys. E 1(6), 595 (1968)

    Google Scholar 

  47. T. Ikuta, R. Shimizu, J. Phys. E 9(9), 721 (1976)

    Google Scholar 

  48. V. Hrkac, E. Lage, G. Köppel, J. Strobel, J. McCord, E. Quandt, D. Meyners, L. Kienle, J. Appl. Phys. 116(134302) (2014)

    Google Scholar 

  49. S. Parkin, S.H. Yang, Nat. Nano 10(3), 195 (2015)

    Google Scholar 

  50. S.H. Yang, K.S. Ryu, S. Parkin, Nat. Nano 10(3), 221 (2015)

    Google Scholar 

  51. A. Fert, V. Cros, J. Sampaio, Nat. Nanotechnol. 8, 152 (2013)

    Google Scholar 

  52. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Nat. Phys. 7, 713 (2011)

    Google Scholar 

  53. E.C. Corredor, S. Kuhrau, F. Kloodt-Twesten, R. Frömter, H.P. Oepen, Phys. Rev. B 96, 060410(R) (2017)

    Article  ADS  Google Scholar 

  54. J. Lucassen, F. Kloodt-Twesten, R. Frömter, H.P. Oepen, R.A. Duine, H.J.M. Swagten, B. Koopmans, R. Lavrijsen, Appl. Phys. Lett. 111(13), 132403 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Frömter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frömter, R. et al. (2018). Imaging the Interaction of Electrical Currents with Magnetization Distributions. In: Wiesendanger, R. (eds) Atomic- and Nanoscale Magnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99558-8_17

Download citation

Publish with us

Policies and ethics