Skip to main content

Microwaves and Functional Materials: A Novel Method to Continuously Detect Metal Ions in Water

  • Chapter
  • First Online:
Modern Sensing Technologies

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 29))

Abstract

Protecting water from chemical pollutants is a major societal goal. Metal ion dispersion from abandoned mines is a global concern and one of the principal causes of metal pollution in water. Toxic metals are a particular concern because they are not degraded by normal biogeochemical cycles and cause adverse environmental and human health effects even with low concentrations if there is long-term exposure. Current laboratory-based methods are not suitable for monitoring adequately water pollution in the environment. Consequently, it is necessary to develop and deploy new sensing systems to investigate water quality continuously. Microwave spectroscopy has been demonstrated as an effective method for offering continuous measurement of material properties, nevertheless, this method suffers from a lack of selectivity and sensitivity (Zarifi et al. Sens Actuators B Chem 255:1561–1568 (2018), [1]). This chapter presents a feasibility study using unique functionalised electromagnetic (EM) sensors for continuous monitoring of zinc in water. The reaction between Zn and a Bi2O3 based thick film that is screen-printed onto a planar interdigitated electrode (IDE) sensors starts within 30 s, and the adsorption equilibrium was attained within 10 min. The response is faster during the initial stage and slows as equilibrium is reached. Results show good linear correlations between C (capacitance), S11 (reflection coefficient) and Zn concentration. Also, the recovery time of sensors is evaluated to be 100–150 s demonstrating the sensors reusability and potential for continuous monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.H. Zarifi, A. Gholidoust, M. Abdolrazzaghi, P. Shariaty, Z. Hashisho, M. Daneshmand, Sensitivity enhancement in planar microwave active-resonator using metal organic framework for CO2 detection. Sens. Actuators B Chem. 255, 1561–1568 (2018)

    Google Scholar 

  2. World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Geneva (2017)

    Google Scholar 

  3. UNICEF and World Health Organization (WHO), Progress on Sanitation And Drinking Water—2015 Update and MDG Assessment. Geneva (2015)

    Google Scholar 

  4. W.M. Mayes, D. Johnston, H.A.B. Potter, A.P. Jarvis, A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales I. Sci. Total Environ. 407(21), 5435–5447 (2009)

    Google Scholar 

  5. A. Lay-Ekuakille, I. Palamara, D. Caratelli, F. Morabito, Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters 015103 (2013)

    Google Scholar 

  6. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment. EXS 101, 133–164 (2012)

    Google Scholar 

  7. UK Technical Advisory Group on the Water Framework Directive, UK environmental standards and conditions (phase 1—SR1-2006) (2008)

    Google Scholar 

  8. United States Environmental Protection Agency, Quality Criteria for Water (Washington, DC 20460: EPA, 1986)

    Google Scholar 

  9. P. Rowland, C. Neal, D. Sleep, C. Vincent, P. Scholefield, Chemical quality status of rivers for the water framework directive: a case study of toxic metals in North West England. Water 3(2), 649 (2011)

    Article  Google Scholar 

  10. P. Byrne, P.J. Wood, I. Reid, The impairment of river systems by metal mine contamination: a review including remediation options. Crit. Rev. Environ. Sci. Technol. 42(19), pp. 2017–2077 (2012)

    Google Scholar 

  11. Environment Agency, H1 Annex D-basic surface water discharges, in Annex D Surface Water Basic, vol. 2.2 (Environment Agency, Bristol, 2011)

    Google Scholar 

  12. K.S. Smith, Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits (Environmental Geochemistry of Mineral Deposits. Part A: Processes, Techniques, and Health Issues, 1999), pp. 161–182

    Google Scholar 

  13. L.M. Plum, L. Rink, H. Haase, The essential toxin: impact of zinc on human health. Int. J. Environmental Res. Public Health 7(4), 1342–1365 (2010)

    Article  Google Scholar 

  14. A. Léonard, G.B. Gerber, F. Léonard, Mutagenicity, carcinogenicity and teratogenicity of zinc. Mutat. Res. Rev. Genetic Toxicol. 168(3), 343–353 (1986)

    Google Scholar 

  15. United Nations, Millennium Development Goals (MDGs) (Salem Press, 2016)

    Google Scholar 

  16. R. Altenburger et al., Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 512, 540–551 (2015)

    Google Scholar 

  17. B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosens. Bioelectron. 94,. 443–455 (2017)

    Google Scholar 

  18. K. Hudson-Edwards, Tackling mine wastes, (in English). Sci. Short Surv. 352(6283), 288–290 (2016)

    Google Scholar 

  19. P. Byrne et al., Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Appl. Geochem. 91, 64–74 (2018)

    Google Scholar 

  20. G. Pattelli et al., Effects of the November 2012 flood event on the mobilization of Hg from the Mount Amiata mining district to the sediments of the Paglia river basin. Minerals 4(2), 241 (2014)

    Article  Google Scholar 

  21. S.F.L. Lynch, L.C. Batty, P. Byrne, Critical control of flooding and draining sequences on the environmental risk of Zn-contaminated riverbank sediments, J. Soils Sedim. (2017)

    Google Scholar 

  22. R. Cidu, F. Frau, S. Da Pelo, Drainage at abandoned mine sites: natural attenuation of contaminants in different seasons. Mine Water Environ. J. Artic. 30(2), 113–126 (2011)

    Article  Google Scholar 

  23. P. Byrne, I. Reid, P.J. Wood, Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales. Environ. Monit. Assess. J. Artic. 185(3), 2817–2832 (2013)

    Article  Google Scholar 

  24. A. Jones, M. Rogerson, G. Greenway, H.A.B. Potter, W.M. Mayes, Mine water geochemistry and metal flux in a major historic Pb-Zn-F orefield, the Yorkshire Pennines, UK. Environ. Sci. Pollut. Res. 20(11), 7570–7581 (2013)

    Article  Google Scholar 

  25. M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water—An electrochemical approach, Sens. Actuators B Chem. 213, 515–533 (2015)

    Google Scholar 

  26. Z. Kovacs et al., Water spectral pattern as holistic marker for water quality monitoring, Talanta 147, 598–608 (2016)

    Google Scholar 

  27. J. Iqbal, D.U. Yiping, F. Howari, M. Bataineh, N. Muhammad, A. Rahim, Simultaneous enrichment and on-line detection of low-concentration copper, cobalt, and nickel ions in water by near-infrared diffuse reflectance spectroscopy combined with chemometrics. J. AOAC Int. Artic. 100(2), 560–565 (2017)

    Article  Google Scholar 

  28. A. Mason et al., Theoretical basis and application for measuring pork loin drip loss using microwave spectroscopy, Sensors 16(2), 182 (13 pp.) (2016)

    Google Scholar 

  29. O. Korostynska, A. Mason, M. Ortoneda-Pedrola, A. Al-Shamma’a, Electromagnetic wave sensing of NO3 and COD concentrations for real-time environmental and industrial monitoring. Sens. Actuators B Chem. 198, 49–54 (2014)

    Google Scholar 

  30. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Planar-circuit methods, in Microwave Electronics (Wiley, 2005), pp. 288–322

    Google Scholar 

  31. M.H. Zarifi, M. Daneshmand, Liquid sensing in aquatic environment using high quality planar microwave resonator. Sens. Actuators B Chem. 225(Supplement C), 517–521 (2016)

    Google Scholar 

  32. S. Cashman, O. Korostynska, A. Shaw, P. Lisboa, L. Conroy, Detecting the presence and concentration of nitrate in water using microwave spectroscopy, IEEE Sens. J. PP(99), 1–1 (2017)

    Google Scholar 

  33. A. Chahadih, P.Y. Cresson, Z. Hamouda, S. Gu, C. Mismer, T. Lasri, Microwave/microfluidic sensor fabricated on a flexible kapton substrate for complex permittivity characterization of liquids. Sens. Actuators A Phys. 229(Supplement C), 128–135 (2015)

    Google Scholar 

  34. M.H. Zarifi, B. Wiltshire, N. Mahdi, P. Kar, K. Shankar, M. Daneshmand, Ultraviolet sensing using TiO2 nanotube integrated high resolution planar microwave resonator device. Nanoscale (2018)

    Google Scholar 

  35. M.H. Zarifi, H. Sadabadi, S.H. Hejazi, M. Daneshmand, A. Sanati-Nezhad, Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci. Rep. (2017)

    Google Scholar 

  36. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 269(Supplement C), 79–90 (2018)

    Google Scholar 

  37. A. Rydosz, E. Maciak, K. Wincza, S. Gruszczynski, Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection. Sens. Actuators B Chem. 237, 876–886 (2016)

    Google Scholar 

  38. A. Mason et al., Noninvasive In-Situ measurement of blood lactate using microwave sensors. IEEE Trans. Biomed. Eng. 65(3), 698–705 (2018)

    Article  Google Scholar 

  39. M.H. Zarifi, S. Farsinezhad, M. Abdolrazzaghi, M. Daneshmand, K. Shankar, Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. Nanoscale 8(14), 7466–7473 (2016). https://doi.org/10.1039/C5NR06567D

  40. A. Bogner, C. Steiner, S. Walter, J. Kita, G. Hagen, R. Moos, Planar microstrip ring resonators for microwave-based gas sensing: design aspects and initial transducers for humidity and ammonia sensing. Sensors 17(10), 2422 (2017)

    Article  Google Scholar 

  41. A. Azmi et al., Performance of coating materials on planar electromagnetic sensing array to detect water contamination. IEEE Sens. J. 17(16), 5244–5251 (2017)

    Article  Google Scholar 

  42. R. Igreja, C.J. Dias, Dielectric response of interdigital chemocapacitors: the role of the sensitive layer thickness. Sens. Actuators B Chem. 115(1), 69–78 (2006)

    Google Scholar 

  43. E. Reimhult, F. Höök, Design of surface modifications for nanoscale sensor applications. Sensors (Basel, Switzerland) 15(1), 1635–1675 (2015)

    Google Scholar 

  44. G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111(5), 3433–3458 (2011)

    Article  Google Scholar 

  45. S. Sen Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review. Adv. Colloid Interface Sci. 162(1–2), 39–58 (2011)

    Google Scholar 

  46. L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015)

    Google Scholar 

  47. P.K. Chatterjee, A.K. SenGupta, Toxic metal sensing through novel use of hybrid inorganic and polymeric ion-exchangers. Solv. Extr. Ion Exch. 29(3), 398–420 (2011)

    Article  Google Scholar 

  48. V. Ferrari, M. Prudenziati, 8—Printed thick-film capacitive sensors, in Printed Films: (Woodhead Publishing, 2012), pp. 193–220

    Google Scholar 

  49. M. Prudenziati, M. Prudenziati (eds.) Handbook of Sensors and Actuators, 1st ed. (Thick Film Sensors) (Amsterdam, 1994)

    Google Scholar 

  50. M. Prudenziati, J. Hormadaly, 1—Technologies for printed films, in Printed Films (Woodhead Publishing, 2012), pp. 3–29

    Google Scholar 

  51. M. Kohl, G. Veltl, M. Busse, Printed sensors produced via thick-film technology for the use in monitoring applications. Procedia Technol. 15, 107–113 (2014)

    Google Scholar 

  52. B. Yosypchuk, J. Barek, Analytical applications of solid and paste amalgam electrodes. Crit. Rev. Anal. Chem. 39(3), 189–203 (2009)

    Google Scholar 

  53. J. Hormadaly, M. Prudenziati, 2—Materials for printed films, in Printed Films (Woodhead Publishing, 2012), pp. 30–62

    Google Scholar 

  54. G.-J. Lee, H.-M. Lee, C.-K. Rhee, Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem. Commun. 9(10), 2514–2518 (2007)

    Google Scholar 

  55. I. Švancara, C. Prior, S.B. Hočevar, J. Wang, A decade with bismuth-based electrodes in electroanalysis. Electroanalysis 22(13), 1405–1420 (2010)

    Article  Google Scholar 

  56. R.O. Kadara, N. Jenkinson, C.E. Banks, Disposable bismuth oxide screen printed electrodes for the high throughput screening of heavy metals. Electroanalysis 21(22), 2410–2414 (2009)

    Google Scholar 

  57. A.O. Dada, A. Olalekan, A. Olatunya, D.O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Liverpool John Moores University, the Faculty of Engineering and Technology Ph.D. Scholarship Programme, which allowed this research to be undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frau, I., Wylie, S., Cullen, J., Korostynska, O., Byrne, P., Mason, A. (2019). Microwaves and Functional Materials: A Novel Method to Continuously Detect Metal Ions in Water. In: Mukhopadhyay, S., Jayasundera, K., Postolache, O. (eds) Modern Sensing Technologies . Smart Sensors, Measurement and Instrumentation, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-99540-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99540-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99539-7

  • Online ISBN: 978-3-319-99540-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics