Skip to main content

Wide Band Antennae System for Remote Vital Signs Detecting Doppler Radar Sensor

  • Chapter
  • First Online:

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 29))

Abstract

This chapter presents a novel antennae system for human vital signs detection. In this work, system working principles and different types of patch antennae are introduced, along with the measurement set up of the vital signs detecting radar sensor system. A wide band (from 900 MHz to 12 GHz) patch antennae system with beam-enhanced capacity is developed in FR4 substrate. This substrate has dielectric constant 4.4 and 1.2 mm of height. To reduce the size of the antennae system, a 3D-orthogonal structure was utilized to design the transmitting and receiving antennae. The multi-patch elements transmitting antenna was placed orthogonally with the receiving antenna to decrease the size of the antennae system. Moreover, the bandwidth and the directional capacity of the antennae were put in high priority to identify the human’s chest displacement at different frequencies, from L band to the X band. The measurement outcome shows that human vital signs could be revealed by the proposed 3D antennae system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Li, L. Liu, Z. Zeng, F. Liu, Advanced signal processing for vital sign extraction with applications in uwb radar detection of trapped victims in complex environments. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 7(3), 783–791 (2014)

    Google Scholar 

  2. S. Kazemi, A. Ghorbani, H. Amindavar, D.R. Morgan, Vital-sign extraction using bootstrap-based generalized warblet transform in heart and respiration monitoring radar system. IEEE Trans. Instrum. Meas. 65(2), 255–263 (2016)

    Article  Google Scholar 

  3. M. He, Y. Nian, Y. Gong, Novel signal processing method for vital sign monitoring using FMCW radar. Biomed. Signal Process. Control 33, 335–345 (2017)

    Article  Google Scholar 

  4. T.-Y.J. Kao, Y. Yan, T.-M. Shen, A.Y.-K. Chen, J. Lin, Design and analysis of a 60-GHz CMOS doppler micro-radar system-in-package for vital-sign and vibration detection. IEEE Trans. Microw. Theory Tech. 61(4), 1649–1659 (2013)

    Article  Google Scholar 

  5. L. Liu, S. Liu, Remote detection of human vital sign with stepped-frequency continuous wave radar. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 7(3), 775–782 (2014)

    Google Scholar 

  6. C. Gu, C. Li, Assessment of human respiration patterns via noncontact sensing using doppler multi-radar system. Sensors 15(3), 6383–6398 (2015)

    Article  Google Scholar 

  7. J. Lin, C. Li, Y.-C. LlU, Random body movement cancellation for non-contact vital sign detection. Sep. 8 2016, uS Patent App. 15/259,580

    Google Scholar 

  8. H. Bo, L. Xu, L. Hao, Y. Dou, L. Zhao, W. Yu, A single-channel non-orthogonal I/Q RF sensor for non-contact monitoring of vital signs. Appl. Comput. Electromagn. Soc. J. 31(6) (2016)

    Google Scholar 

  9. T. Hall, N. Malone, J. Tsay, J. Lopez, T. Nguyen, R. Banister, D.C. Lie, Long-term vital sign measurement using a non-contact vital sign sensor inside an office cubicle setting, in IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (IEEE, 2016), pp. 4845–4848

    Google Scholar 

  10. F. JalaliBidgoli, S. Moghadami, S. Ardalan, A compact portable microwave life-detection device for finding survivors. IEEE Embed. Syst. Lett. 8(1), 10–13 (2016)

    Article  Google Scholar 

  11. S.-T. Tseng, Y.-H. Kao, C.-C. Peng, J.-Y. Liu, S.-C. Chu, G.-F. Hong, C.-H. Hsieh, K.-T. Hsu, W.-T. Liu, Y.-H. Huang et al., A 65-nm CMOS low-power impulse radar system for human respiratory feature extraction and diagnosis on respiratory diseases. IEEE Trans. Microw. Theory Tech. 64(4), 1029–1041 (2016)

    Article  Google Scholar 

  12. H.-C. Kuo, C.-C. Lin, C.-H. Yu, P.-H. Lo, J.-Y. Lyu, C.-C. Chou, H.-R. Chuang, A fully integrated 60-GHz CMOS direct-conversion doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection. IEEE Trans. Microw. Theory Tech. 64(4), 1018–1028 (2016)

    Article  Google Scholar 

  13. T.-M. Shen, T.-Y.J. Kao, T.-Y. Huang, J. Tu, J. Lin, R.-B. Wu, Antenna design of 60-GHz micro-radar system-in-package for noncontact vital sign detection. IEEE Antennas Wirel. Propag. Lett. 11, 1702–1705 (2012)

    Article  Google Scholar 

  14. M.S. Rabbani, H. Ghafouri-Shiraz, Ultra-wide patch antenna array design at 60 GHz band for remote vital sign monitoring with doppler radar principle. J. Infrared Millim. Terahertz Waves 1–19

    Google Scholar 

  15. C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016)

    Google Scholar 

  16. A.B. Constantine et al., Antenna theory: analysis and design, in Microstrip Antennas, 3rd edn. (Wiley, 2005)

    Google Scholar 

  17. S. Bist, S. Saini, V. Prakash, B. Nautiyal, Study the various feeding techniques of microstrip antenna using design and simulation using CST microwave studio. Int. J. Emerg. Technol. Adv. Eng. 4(9) (2014)

    Google Scholar 

  18. R. Garg, Microstrip Antenna Design Handbook (Artech house, 2001)

    Google Scholar 

  19. K. Carver, J. Mink, Microstrip antenna technology. IEEE Trans. Antennas Propag. 29(1), 2–24 (1981)

    Article  Google Scholar 

  20. K. Luk, C. Mak, Y. Chow, K. Lee, Broadband microstrip patch antenna. Electron. Lett. 34(15), 1442–1443 (1998)

    Article  Google Scholar 

  21. J.S. Sainath, K. Karthikeyan, Design and analysis of multiband hybrid coupler pentagon micro strip antenna for L-band applications, in 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2015), pp. 1–5

    Google Scholar 

  22. P. Das, P. Kumar et al., Designing microstrip antenna with octagonal bounded elliptical slots, in 2016 10th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2016), pp. 1–3

    Google Scholar 

  23. N.T.P. Van, L. Tang, N.D. Minh, F. Hasan, S. Mukhopadhyay, Extra wide band 3D patch antennae system design for remote vital sign doppler radar sensor detection, in 2017 Eleventh International Conference on Sensing Technology (ICST) (IEEE, 2017), pp. 1–5

    Google Scholar 

  24. A.M. Abbosh, Design of ultra-wideband three-way arbitrary power dividers. IEEE Trans. Microw. Theory Tech. 56(1), 194–201 (2008)

    Article  Google Scholar 

  25. S.W. Wong, L. Zhu, Ultra-wideband power divider with good in-band splitting and isolation performances. IEEE Microw. Wirel. Compon. Lett. 18(8), 518–520 (2008)

    Article  Google Scholar 

  26. A. Tariq, Vital signs monitoring using doppler radar and on-body antennas. Ph.D. Dissertation, University of Birmingham (2013)

    Google Scholar 

  27. H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, X. Zhu, Noncontact physiological dynamics detection using low-power digital-if doppler radar (IEEE Trans. Instrum, Meas, 2017)

    Google Scholar 

  28. A.D. Droitcour, O. Boric-Lubecke, V.M. Lubecke, J. Lin, G.T. Kovacs, Range correlation and I/Q performance benefits in single-chip silicon doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 52(3), 838–848 (2004)

    Article  Google Scholar 

  29. E.O. Brigham, E. Brigham, The Fast Fourier Transform and Its Applications, vol. 1 (Prentice Hall Englewood Cliffs, NJ, 1988)

    MATH  Google Scholar 

  30. M. Rahman, M. Chowdhury, S. Fattah, An efficient scheme for mental task classification utilizing reflection coefficients obtained from autocorrelation function of EEG signal. Brain Inf. 1–12 (2017)

    Google Scholar 

  31. F. Khan, S.H. Cho, A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar. Sensors 17(2), 290 (2017)

    Article  Google Scholar 

  32. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic press, 2008)

    Google Scholar 

  33. X. Lu, H. Liu, J. Kang, J. Cheng, Wavelet frequency spectrum and its application in analyzing an oscillating chemical system. Anal. Chimica acta 484(2), 201–210 (2003)

    Article  Google Scholar 

  34. Z. Yu, D. Zhao, Z. Zhang, Doppler radar vital signs detection method based on higher order cyclostationary. Sensors 18(1), 47 (2017)

    Article  Google Scholar 

  35. BK-NICO medical center hanoi university of technology, http://bme.hust.edu.vn, Accessed on 01 Jan 2017

Download references

Acknowledgements

This research is funded by the NZ aid program, New Zealand Ministry of Foreign Affairs and Trade, and The Faculty for the Future Program-Schlumberger Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Phuoc Van Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, T.P.V., Tang, L., Nguyen, D.M., Hasan, F., Mukhopadhyay, S. (2019). Wide Band Antennae System for Remote Vital Signs Detecting Doppler Radar Sensor. In: Mukhopadhyay, S., Jayasundera, K., Postolache, O. (eds) Modern Sensing Technologies . Smart Sensors, Measurement and Instrumentation, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-99540-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99540-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99539-7

  • Online ISBN: 978-3-319-99540-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics