Skip to main content

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 91))

  • 581 Accesses

Abstract

Let f be a real function f defined and locally bounded on [t 0, ) for some t 0 ≥ 0. In this chapter, we consider asymptotically inverse and asymptotically quasi-inverse functions for such functions and discuss four problems concerning their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Agarwal, S. Hristova, and D. O’Regan, Stability with respect to initial time difference for generalized delay differential equations, Electronic J. Diff. Equ. 49 (2015), 1–19.

    MathSciNet  MATH  Google Scholar 

  2. A.A. Balkema, J.L. Geluk, and L. de Haan, An extension of Karamata’s Tauberian theorem and its connection with complimentary convex functions, Quarterly J. Math. 30 (1979), no. 2, 385–416.

    Article  Google Scholar 

  3. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  4. R. Bojanić and E. Seneta, A unified theory of regularly varying sequences, Math. Z. 134 (1973), 91–106.

    Article  MathSciNet  Google Scholar 

  5. V. Božin and D. Djurčić, A proof of an Aljančić hypothesis on O-regularly varying sequences, Publ. Inst. Math. Nouvelle Ser. 62 (76) (1997), 46–52.

    MATH  Google Scholar 

  6. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Preprint Philipps-Universität, vol. 85, Marburg, 2001.

    Google Scholar 

  7. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukrain. Matem. Zh. 54 (2002), no. 2, 149–169 (Russian); English transl. in Ukrain. Math. J. 54 (2002), no. 2, 179–206.

    Google Scholar 

  8. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On some properties of asymptotically quasi-inverse functions and their applications. I, Teor. Imov. Mat. Stat. 70(2004), 9–25 (Ukrainian); English transl. in Theory Probab. Math. Statist. 70(2005), 11–28.

    Google Scholar 

  9. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On some properties of asymptotically quasi-inverse functions and their applications. II, Teor. Imovirnost. Matem. Statist. 71(2004), 33–48 (Ukrainian); English transl. in Theory Probab. Math. Statist. 71 (2005), 37–52.

    Google Scholar 

  10. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On some extensions of Karamata’s theory and their applications, Publ. Inst. Math. (Beograd) (N. S.) 80 (94) (2006), 59–96.

    Article  MathSciNet  Google Scholar 

  11. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On some properties of asymptotically quasi-inverse functions, Teor. Imovirnost. Matem. Statist. 77(2007), 13–27 (Ukrainian); English transl. in Theory Probab. Math. Statist. 77(2008), 15–30.

    Google Scholar 

  12. A. Chakak and L. Imlahi, Multivariate probability integral transformation: application to maximum likelihood estimation, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A Matemáticas 95 (2001), no. 2, 201–212.

    MathSciNet  MATH  Google Scholar 

  13. C.-P. Chen and L. Chen, Asymptotic behavior of trigonometric series with O-regularly varying quasimonotone coefficients, J. Math. Anal. Appl. 250(2000), 13–26.

    Google Scholar 

  14. C. Chicone, Stability theory of ordinary differential equations, in Mathematics of Complexity and Dynamical Systems, Springer, New York, 2011, pp. 13–26.

    Google Scholar 

  15. D. Djurčić, V. Konjokrad, and R.M. Nilolić, O-regularly varying functions and strong asymptotic equivalence, Filomat 26 (2012), no. 5, 1075–1080.

    Article  MathSciNet  Google Scholar 

  16. D. Djurčić, R.M. Nilolić, and A. Torgašev, The weak and strong asymptotic equivalence relations and the generalizws inverse, Lithuanian Math. J. 51 (2011), no. 4, 472–476.

    Article  MathSciNet  Google Scholar 

  17. D. Djurčić and A. Torgašev, Strong asymptotic equivalence and inversion of functions in the class Kc, J. Math. Anal. Appl. 255(2001), no. 2, 383–390.

    Article  MathSciNet  Google Scholar 

  18. D. Djurčić and A. Torgašev, Some asymptotic relations for the generalized inverse, J. Math. Anal. Appl. 335 (2007), no. 2, 1397–1402.

    Article  MathSciNet  Google Scholar 

  19. D. Djurčić, A. Torgašev, and S. Ješić, The strong asymptotic equivalence and the generalized inverse, Siberian Math. J. 49(2008), no. 4, 628–636.

    Article  MathSciNet  Google Scholar 

  20. C. Feng, H. Wang, M. Xin, and J. Kowalski, A note on generalized inverses of distribution function and quantile transformation, Appl. Math. 3 (2012), 2098–2100.

    Article  Google Scholar 

  21. R. Fraiman and B. Pateiro-López, Functional quantiles, in Recent advances in functional data analysis and related topics, Physica-Verlag/Springer, Heidelberg, 2011, pp. 123–129.

    Book  Google Scholar 

  22. J. Galambos and E. Seneta, Regularly varying sequences, Proc. Amer. Math. Soc. 41 (1973), 110–116.

    Article  MathSciNet  Google Scholar 

  23. L. de Haan, On regular variation and its application to the weak convergence of sample extremes, Math. Centre Tracts 32, Amsterdam, 1970.

    Google Scholar 

  24. R. Higgins, On a problem in the theory of sequences, Elemente Math. (1974), 37–39.

    Google Scholar 

  25. J. Karamata, Sur certains “Tauberian theorems” de M.M.Hardy et Littlewood, Mathematica (Cluj) 3 (1930), 33–48.

    Google Scholar 

  26. J. Karamata, Sur un mode de croissance regulie‘re des fonctions, Mathematica (Cluj) 4 (1930), 38–53.

    MATH  Google Scholar 

  27. E.P. Klement, R. Mesiar, and E. Pap, Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms, Fuzzy Sets and Systems 104 (1999), 3–13.

    Article  MathSciNet  Google Scholar 

  28. E.P. Klement, R. Mesiar, and E. Pap, Triangular Norms, Springer, New York, 2000.

    Book  Google Scholar 

  29. E. Manstavicius, Natural divisors and the Brownian motion, J. Theor. Nombres Bordeaux 8 (1996), no. 1, 159–171.

    Article  MathSciNet  Google Scholar 

  30. V. Marić, Regular Variation and Differential Equations, Springer-Verlag, Berlin–Heidelberg–New York, 2000.

    Book  Google Scholar 

  31. S. Matucci and P. Řehák, Regularly varying sequences and second order difference equations, J. Difference Equ. Appl. 14 (2008), no. 1, 17–30.

    Article  MathSciNet  Google Scholar 

  32. T. Mikosch and O. Wintenberger, The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains, Probab. Theory Relat. Fields 159 (2013), no. 1, 157–196.

    MathSciNet  MATH  Google Scholar 

  33. E.F. Mishchenko and N.Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, “Nauka”, Moscow, 1975; English transl. Plenum Press, New York, 1980.

    Book  Google Scholar 

  34. I.S. Molchanov, Limit Theorems for Unions of Random Closed Sets, Lecture Notes in Mathematics 1561, Springer-Verlag, Berlin–Heidelberg–New York, 1993.

    Google Scholar 

  35. P. Ney and S. Wainger, The renewal theorem for a random walk in two-dimensional time, Studia Math. 44 (1972), 71–85.

    Article  MathSciNet  Google Scholar 

  36. S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc. 100 (1961), no. 2, 217–240.

    Article  MathSciNet  Google Scholar 

  37. G. Polya, Bemerkungen über unendliche Folgen und ganze Funktionen, Math. Ann. 88 (1923), 69–183.

    Article  MathSciNet  Google Scholar 

  38. P. Řehák, Nonlinear Differential Equations in the Framework of Regular Variation, A–Math–Net, Brno, 2014.

    Google Scholar 

  39. A.M. Samoı̆lenko and O.M. Stanzhytskyi, Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations, Naukova Dumka, Kyiv, 2009 (Ukrainian); English transl. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

    Google Scholar 

  40. L. Saulis and V.A. Statulevičius, Limit Theorems for Large Distributions, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991.

    Book  Google Scholar 

  41. R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z. 22 (1925), 89–152.

    Article  MathSciNet  Google Scholar 

  42. R. Serfling, Quantile functions for multivariate analysis: approaches and applications, Statistica Neerlandica 56 (2002), 214–232.

    Article  MathSciNet  Google Scholar 

  43. M.D. Shaw and C. Yakar, Stability criteria and slowly growing motions with initial time difference, Probl. Nonl. Anal. Eng. Sys. 1 (2000), 50–66.

    Google Scholar 

  44. I. Weissman, A note on the Bojanić-Seneta theory of regularly varying sequences, Math. Zeitschrift 151 (1976), 29–30.

    Article  MathSciNet  Google Scholar 

  45. Yakar, M. Çiçek, M. B. Gücen, Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems, Comput. Math. Appl. 64 (2012), no. 6, 2118–2127.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buldygin, V.V., Indlekofer, KH., Klesov, O.I., Steinebach, J.G. (2018). Asymptotically Quasi-inverse Functions. In: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Probability Theory and Stochastic Modelling, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-99537-3_7

Download citation

Publish with us

Policies and ethics