Skip to main content

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 91))

  • 551 Accesses

Abstract

The defining property of an ORV-function f is that \(f\in \mathbb {{F}}_{+}\) is measurable and the upper limit function exists and is positive and finite (see Definition 3.7). The main aim of this chapter is to study a subclass of functions in ORV with “nondegenerate group of regular points”, that is, those ORV-functions for which a limit function exists (see Definition 3.2) and is positive and finite belonging to a certain multiplicative subgroup in R +.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.H. Abel, Méthode générale pour trouver des fonctions d’une seule quantité variable lorsqu’une propriété de ces fonctions est exprimée par une équation entre deux variables, Mag. Naturvidenskab. 1 (1823), no. 2, 1–10.

    Google Scholar 

  2. J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York–San Francisco–London, 1966.

    MATH  Google Scholar 

  3. J. Aczél, The state of the second part of Hilbert’s fifth problem, Bull. Amer. Math. Soc. 20 (1989), no. 2, 153–163.

    Article  MathSciNet  Google Scholar 

  4. V. Aguiar and I. Guedes, Shannon entropy, Fisher information and uncertainty relations for log-periodic oscillators, Phys. A 423 (2015), 72–79.

    Article  MathSciNet  Google Scholar 

  5. S. Aljančić and D. Arandelović, O-regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 22 (36) (1977), 5–22.

    Google Scholar 

  6. S. Banach, Sur l’equation fonctionnelle f(x + y) = f(x) + f(y), Fund. Math. 1 (1920), 123–124.

    Google Scholar 

  7. F. Barra, N. Chernov, and T. Gilbert, Log-periodic drift oscillations in self-similar billiards, Nonlinearity 20 (2007), no. 11, 2539–2549.

    Article  MathSciNet  Google Scholar 

  8. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  9. H. Bohr, Fastperiodische Funktionen, Springer-Verlag, Berlin, 1932.

    Book  Google Scholar 

  10. D.S. Brée and N.L. Joseph, Testing for financial crashes using the log-periodic power law model, Int. Review Financial Anal. 30 (2013), 287–297.

    Article  Google Scholar 

  11. I. Brissaud, Is the evolution of jazz described by a log-periodic law?, Math. Sci. Hum. Math. Soc. Sci. 178 (2007), 41–50.

    MathSciNet  MATH  Google Scholar 

  12. N.G. de Bruijn, Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform, Nieuw Arch. Wisk. 7 (1959), no. 3, 20–26.

    MathSciNet  MATH  Google Scholar 

  13. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On factorization representations for Avakumović–Karamata functions with nondegenerate groups of regular points, Preprint Philipps-Universität, vol. 89, Marburg, 2002.

    Google Scholar 

  14. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On factorization representations for Avakumović–Karamata functions with nondegenerate groups of regular points, Anal. Math. 30 (2004), no. 3, 161–192.

    Article  MathSciNet  Google Scholar 

  15. A.L. Cauchy, Cours d’analyse de l’E‘cole Polytechnique. Analyse algebrique, V, Paris, 1821.

    Google Scholar 

  16. G. Darboux, Sur la composition des forces en statique, Bull. Sci. Math. 9 (1875), 281–288.

    MATH  Google Scholar 

  17. D. Drasin and E. Seneta, A generalization of slowly varying functions, Proc. Amer. Math. Soc. 96 (1986), no. 3, 470–472.

    Article  MathSciNet  Google Scholar 

  18. D. Drasin and D.F. Shea, Convolution inequalities, regular variation and exceptional sets, J. Anal. Math. 29 (1976), 232–293.

    Article  MathSciNet  Google Scholar 

  19. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  20. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed., Wiley, New York, 1971.

    MATH  Google Scholar 

  21. I.V. Grinevich and Yu.S. Khokhlov, The domains of attraction of semistable laws, Teor. Veroyatnost. i Primenen. 40 (1995), no. 2, 417–422 (Russian); English transl. in Theory Probab. Appl. 40 (1996), no. 2, 361–366.

    Article  MathSciNet  Google Scholar 

  22. L. de Haan, On regular variation and its application to the weak convergence of sample extremes, Math. Centre Tracts 32, Amsterdam, 1970.

    Google Scholar 

  23. G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f(x + y) = f(x) + f(y), Math. Ann. 60 (1905), 459–462.

    Google Scholar 

  24. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., The Clarendon Press, Oxford University Press, New York, 1979.

    Google Scholar 

  25. D. Hilbert, Mathematical problems, Lecture delivered before the International Congress of Mathematicians at Paris in 1900, Bull. Amer. Math. Soc. 8 (1902), 437–479.

    Article  MathSciNet  Google Scholar 

  26. J. Karamata, Sur un mode de croissance régulière. Theéorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55–62.

    Article  MathSciNet  Google Scholar 

  27. M. Kuczma, Functional Equations in a Single Variable, PWN, Warszawa, 1968.

    MATH  Google Scholar 

  28. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser, Basel–Boston–Berlin, 2009.

    Google Scholar 

  29. C.V. Rodríguez-Caballero and O. Knapik, Bayesian log-periodic model for financial crashes, Eur. Phys. J. B 87 (2014), no. 10, Art. 228.

    Google Scholar 

  30. P.K. Sahoo and P. Kanappan, Introduction to Functional Equations, Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, FL, 2011.

    Google Scholar 

  31. E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin–Heidelberg–New York, 1976.

    Book  Google Scholar 

  32. W. Sierpiński, Sur l’equation fonctionnelle f(x + y) = f(x) + f(y), Fund. Math. 1 (1920), 116–122.

    Google Scholar 

  33. H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), no. 1, 93–104.

    Article  Google Scholar 

  34. J.H. Wosnitza and J. Leker, Can log-periodic power law structures arise from random fluctuations?, Phys. A 401 (2014), 228–250.

    Article  MathSciNet  Google Scholar 

  35. M.I. Yadrenko, Dirichlet’s Principle and its Applications, “Vyshcha Shkola”, Kyiv, 1985. (Ukrainian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buldygin, V.V., Indlekofer, KH., Klesov, O.I., Steinebach, J.G. (2018). Nondegenerate Groups of Regular Points. In: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Probability Theory and Stochastic Modelling, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-99537-3_5

Download citation

Publish with us

Policies and ethics