Skip to main content

Almost Sure Convergence of Renewal Processes

  • Chapter
  • First Online:
  • 552 Accesses

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 91))

Abstract

Consider some renewal sequence, that is, a sequence of partial sums {S n}n≥0 of independent identically distributed random variables {X n}n≥1. Our aim in this chapter is to show that various functionals of partial sums and corresponding renewal processes are asymptotically equivalent if one considers them from the point of view of generalized renewal processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Alsmeyer, Erneuerungstheorie. Analyse stochastischer Regenerationsschemata, Teubner, Stuttgart, 1991.

    Book  Google Scholar 

  2. G. Alsmeyer, On the Markov renewal theorem, Stochastic Process. Appl. 50 (1994), no. 1, 37–56.

    Article  MathSciNet  Google Scholar 

  3. V.S. Barbu and N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications: Their use in Reliability and DNA Analysis, Springer-Verlag, New York, 2008.

    MATH  Google Scholar 

  4. A.A. Borovkov, Probability Theory, Springer, London, 2013.

    Book  Google Scholar 

  5. D.R. Cox, Renewal Theory, Wiley, New York, 1962.

    MATH  Google Scholar 

  6. D.R. Cox and P.A.W. Lewis, The Statistical Analysis of Series of Events, Wiley, New York, 1966.

    Book  Google Scholar 

  7. J.L. Doob, Renewal theory from the point of view of the theory of probability, Trans. Amer. Math. Soc. 63 (1948), no. 3, 422–438.

    Article  MathSciNet  Google Scholar 

  8. I. Fazekas and O.I. Klesov, A general approach to the strong laws of large numbers, Teor. Veroyatnost. i Primenen. 45 (2000), no. 3, 568–583 (Ukrainian); English transl. in Theory Probab. Appl. 45 (2002), no. 3, 436–449.

    Article  MathSciNet  Google Scholar 

  9. W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math. 68 (1946), no. 2, 257–262.

    Article  MathSciNet  Google Scholar 

  10. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed., Wiley, New York, 1971.

    MATH  Google Scholar 

  11. A. Frolov, A. Martikainen, and J. Steinebach, Limit theorems for maxima of sums and renewal processes, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Veroyatn. i Stat. 278 (2001), 261–274, 314–315 (Russian); English transl. in J. Math. Sci. (N. Y.) 118 (2003), no. 6, 5658–5666.

    Google Scholar 

  12. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New York, 1978.

    MATH  Google Scholar 

  13. A. Gut, Stopped Random Walks. Limit Theorems and Applications, second edition, Springer, New York, 2009.

    Google Scholar 

  14. A. Gut, O. Klesov, and J. Steinebach, Equivalences in strong limit theorems for renewal counting processes, Statist. Probab. Lett. 35 (1997), no. 4, 381–394.

    Article  MathSciNet  Google Scholar 

  15. L. Horváth, Strong approximation of extended renewal processes, Ann. Probab. 12 (1984), no. 4, 1149–1166.

    Article  MathSciNet  Google Scholar 

  16. S. Janson, Renewal theory for m-dependent variables, Ann. Probab. 11 (1983), no. 3, 558–568.

    Article  MathSciNet  Google Scholar 

  17. K. Khorshidian, Strong law of large numbers for nonlinear semi-Markov reward processes, Asian J. Math. Stat. 3 (2010), no. 4, 310–315.

    MathSciNet  Google Scholar 

  18. O. Klesov, Z. Rychlik, and J. Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Statist. 21 (2001), no. 2, 329–349.

    MathSciNet  MATH  Google Scholar 

  19. O.I. Klesov and J. Steinebach, Asymptotic behavior of renewal processes defined by random walks with multidimensional time, Teor. Imovirnost. Matem. Statist. 56 (1997), 105–111 (Ukrainian); English transl. in Theory Probab. Math. Statist. 56 (1998), 107–113.

    Google Scholar 

  20. A. Kolmogoroff, Sur la loi forte des grands nombres, C. R. Acad. Sci. Paris 191 (1930), 910–912.

    MATH  Google Scholar 

  21. I.N. Kovalenko, Queueing theory, Progress in Science: Probability theory. Mathematical statistics. Theoretical cybernetics, 5–109, Akad. Nauk SSSR Vsesojuz. Inst. Naucn. i Tehn. Informacii, Moscow, 1970. (Russian)

    Google Scholar 

  22. L. Lipsky, Queueing Theory: A Linear Algebraic Approach, Springer-Verlas, New York, 2008.

    MATH  Google Scholar 

  23. J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fund. Math. 29 (1937), 60–90.

    MATH  Google Scholar 

  24. A.I. Martikainen and V.V. Petrov, On a Feller theorem, Teor. Veroytnost. i Primenen 25 (1980), no. 1, 194–197 (Russian); English transl. in Theory Probab. Appl. 25 (1980), no. 1, 191–193.

    Google Scholar 

  25. T. Mori, The strong law of large numbers when extreme terms are excluded from sums, Z. Wahrscheinlichkeitstheorie verw. Gebiete 36 (1976), no. 3, 189–194.

    Article  MathSciNet  Google Scholar 

  26. É. Mourier, Lois des grands nombres et théorie ergodique, C. R. Acad. Sci. Paris 232 (1951), 923-925.

    MathSciNet  MATH  Google Scholar 

  27. R. Pyke, Markov renewal processes: definitions and preliminary properties, Ann. Math. Stat. 32 (1961), no. 4, 1231–1242.

    Article  MathSciNet  Google Scholar 

  28. R. Serfozo, Travel times in queueing networks and network sojourns, Ann. Oper. Res. 48 (1994), no. 1–4, 3–29.

    MathSciNet  MATH  Google Scholar 

  29. R. Serfozo, Basics of Applied Stochastic Processes, Springer-Verlag, Berlin, 2009.

    Book  Google Scholar 

  30. B.A. Sevast’yanov, Renewal theory, Itogi Nauki Tehn.; Ser. Teor. Verojatn., mat. Statist., teor. Kibernet. 11 (1974), 99-128 (Russian); English transl. in J. Soviet. Math., 4 (1975), 281–302 (1976).

    Google Scholar 

  31. Q.-M. Shao, Maximal inequalities for partial sums of ρ-mixing sequences, Ann. Probab. 23 (1995), no. 2, 948–965.

    Article  MathSciNet  Google Scholar 

  32. V.M. Shurenkov, Ergodic Theorems and Related Problems, “Naukova Dumka”, Kiev, 1981 (Russian); English transl. VSP, Utrecht, 1998.

    Google Scholar 

  33. V.M. Shurenkov, Ergodic Markov Processes, “Nauka”, Moscow, 1989. (Russian)

    Google Scholar 

  34. D. Siegmund, Sequential Analysis. Tests and Confidence Intervals, Springer–Verlag, New York, 1985.

    Google Scholar 

  35. W.L. Smith, Renewal theory and its ramifications, J. Roy. Stat. Soc. B20 (1958), no. 2, 243–302.

    MathSciNet  MATH  Google Scholar 

  36. M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, CBMS–NFS Regional Conf. Ser. Appl. Math., vol. 39, SIAM, Philadelphia, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buldygin, V.V., Indlekofer, KH., Klesov, O.I., Steinebach, J.G. (2018). Almost Sure Convergence of Renewal Processes. In: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Probability Theory and Stochastic Modelling, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-99537-3_2

Download citation

Publish with us

Policies and ethics