Advertisement

Characterization of 3D Printing Mortars Made with OPC/CSA Mixes

  • Noura KhalilEmail author
  • Sébastien Rémond
  • Bilal Baz
  • Georges Aouad
Conference paper
  • 1.5k Downloads
Part of the RILEM Bookseries book series (RILEM, volume 19)

Abstract

Printable mortars used in 3D printing of cementitious materials must have rheological behaviour and setting rigorously controlled. In this research, mixes made of two types of cement, ordinary Portland cement (OPC) and Calcium Sulfoaluminate cement (CSA) are adopted to control the printability of a mortar. Extrudability, buildability and comparable compressive strength to that of a traditional mortar are the specifications required by the printable mortar. Different mixes of OPC/CSA cement pastes (ranging between 0 and 10% of CSA) and 2 mixes of OPC/CSA mortars (0 and 7% of CSA) are studied. The cement pastes are studied by isothermal calorimetry and rheometer. Heat of hydration and cement pastes' yield stress increase with the dosage of CSA in the mix. A mortar made out of 7% CSA in previous article [1] is then tested in laboratory and their behaviour is compared to the results of the cement pastes.

Keywords

Sulfoaluminate cement Heat of hydration Thixotropy 

Notes

Acknowledgments

This research work has been carried out in the frame of the MATRICE Project, co-funded by the region “Hauts de France” and the European Union with the European Regional Development Fund. The authors also acknowledge the supply of materials from Vicat, Sika and the Carrières du Boulonais.

References

  1. 1.
    Khalil, N., Aouad, G., El Cheikh, K., Rémond, S.: Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr. Build. Mater. 157, 382–391 (2017)CrossRefGoogle Scholar
  2. 2.
    American Society for Testing and Materials (ASTM). ASTM F2792-10 Standard Terminology for Additive Manufacturing Technologies (2013)Google Scholar
  3. 3.
    Vardhan, G.H., Charan, G.H., Reddy, P.V.S., Kumar, K.S.: 3D printing: the dawn of a new era in manufacturing? Int. J. Recent Innov. Trends Comput. Commun. 2(8), 2321–2376 (2013)Google Scholar
  4. 4.
    Schwaiger, J., Lueth, T.C., Irlinger, F.: G-code generation for a new printing process based on 3D plastic polymer droplet generation. In: ASME International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing ():V02AT02A006.  https://doi.org/10.1115/imece2013-63152
  5. 5.
    Weller, C., Kleer, R., Piller, F.T.: Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 164, 43–56 (2015)CrossRefGoogle Scholar
  6. 6.
    Le, T., Webster, J., Buswell, R., Austin, S., Gibb, A., Thorpe, T.: Fabricating construction components using layered manufacturing technology. In: Global Innovation in Construction Conference, Loughborough University, pp. 13–16 (2009)Google Scholar
  7. 7.
    Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G.F., Thorpe, T.: Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 45(8), 1221–1232 (2012)CrossRefGoogle Scholar
  8. 8.
    Le, T.T., Austin, S.A., Lim, S., Buswell, S., Law, R., Gibb, A.G.F., Thorpe, A.T.: Hardened properties of high performance printing concrete. Cem. Concr. Res. 42, 558–566 (2012)CrossRefGoogle Scholar
  9. 9.
    Wangler, T., et al.: Digital concrete: opportunities and challenges. RILEM Tech. Lett. 1, 67–75 (2016) CrossRefGoogle Scholar
  10. 10.
    Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P.: Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders. Mater. Des. 100, 102–109 (2016)CrossRefGoogle Scholar
  11. 11.
    Malaeb, Z., Hachem, H., Tourbah, A., Maalouf, T., El Zarwi, N., Hamzeh, F.: 3D concrete printing: machine and mix design. Int. J. Civ. Eng. Technol. 6(6), 14–22 (2015)Google Scholar
  12. 12.
    Le Saoût, G., Lothenbach, B., Hori, A., Higuchi, T., Winnefeld, F.: Hydration of Portland cement with additions of calcium sulfoaluminates. Cem. Concr. Res. 43(1), 81–94 (2013)CrossRefGoogle Scholar
  13. 13.
    Hargis, C.W., Kirchheim, A.P., Monteiro, P.J.M., Gartner, E.M.: Early age hydration of calcium sulfoaluminate (synthetic ye’elimite, C 4A3S) in the presence of gypsum and varying amounts of calcium hydroxide. Cem. Concr. Res. 48, 105–115 (2013)CrossRefGoogle Scholar
  14. 14.
    Shermanl, N., Beretkal, J., Santoro, L., Valenti, G.L.: Long-term behaviour of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate. Cem. Concr. Res. 25, 113–126 (1995)CrossRefGoogle Scholar
  15. 15.
    Chaunsali, P., Mondal, P.: Physico-chemical interaction betwe en mineral admixtures and OPC-calcium sulfoaluminate (CSA) cements and its influence on early-age expansion. Cem. Concr. Res. 80, 10–20 (2016)CrossRefGoogle Scholar
  16. 16.
    Trauchessec, R., Mechling, J.M., Lecomte, A., Roux, A., Le Rolland, B.: Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cem. Concr. Compos. 56, 106–114 (2015)CrossRefGoogle Scholar
  17. 17.
    Roussel, N.: A thixotropy model for fresh fluid concretes: theory, validation and applications. Cem. Concr. Res. 36, 1797–1806 (2006)CrossRefGoogle Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  • Noura Khalil
    • 1
    Email author
  • Sébastien Rémond
    • 1
  • Bilal Baz
    • 1
    • 2
  • Georges Aouad
    • 2
  1. 1.IMT Lille Douai, Univ. Lille, EA 4515 - LGCgE – Laboratoire de Génie Civil et géoEnvironnement, Département Génie Civil & EnvironnementalLilleFrance
  2. 2.Faculty of EngineeringUniversity of Balamand, UOBAl KouraLebanon

Personalised recommendations