Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete

  • M. StefanoniEmail author
  • U. Angst
  • B. Elsener
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 19)


This contribution addresses corrosion of steel in digitally fabricated concrete. In recent times the concrete processing for digital fabrication applications has been greatly advancing, rising the interest of research institutions, industrial partners, governments and public media. Nevertheless, for a broad large scale application, not just the technological feasibility, but also the long term durability needs to be ensured. This contribution presents a general overview of recently developed digital fabrication technologies and assesses them from the point of view of reinforcement corrosion risks. Experimental results are presented and a number of potential durability issues specific to digital fabrication are raised. On the other hand, we highlight opportunities for making more corrosion-resistant concrete structures by taking advantage of digital fabrication technology.


Durability Preferential attack Admixtures 


  1. 1.
    The third industrial revolution. Economist 403(8781), 15 (2012)Google Scholar
  2. 2.
    Wangler, T., Lloret, E., Reiter, L., Hack, N., Gramazio, F., Kohler, M., Bernhard, M., Dillenburger, B., Buchli, J., Roussel, N., Flatt, R.: Digital concrete: opportunities and challenges. RILEM Tech. Lett. 1, 67–75 (2016)CrossRefGoogle Scholar
  3. 3.
    Hack, N., Wangler, T., Mata-Falcon, J., Dörfler, K., Kumar, N., Walzer, A.N., Graser, K., Reiter, L., Richner, H., Buchli, J., Kaufmann, W., Flatt, R.J., Gramazio, F., Kohler, M.: Mesh mould: an on site, robotically fabricated, functional formwork. In: Second Concrete Innovation Conference (2nd CIC), Paper no. 19, Tromsø (2017)Google Scholar
  4. 4.
    Lloret, E., Shahab, A.R., Linus, M., Flatt, R.J., Gramazio, F., Kohler, M., Langenberg, S.: Complex concrete structures: merging existing casting techniques with digital fabrication. Comput. Aided Des. 60, 40–49 (2015)CrossRefGoogle Scholar
  5. 5.
    Angst, U.M., Geiker, M.R., Michel, A., et al.: The steel–concrete interface. Mater. Struct. 50(2), 143 (2017)CrossRefGoogle Scholar
  6. 6.
    Davis, J.R.: Corrosion of Weldments. ASM International (2006)Google Scholar
  7. 7.
    Eid, N.M.: Localized corrosion at welds in structural steel under desalination plant conditions part I: effect of surface roughness and type of welding electrode. Desalination 73, 397–406 (1989)CrossRefGoogle Scholar
  8. 8.
    Stefanoni, M., Angst, U., Elsener, B.: Local electrochemistry of reinforcement steel–distribution of open circuit and pitting potentials on steels with different surface condition. Corros. Sci. 98, 610–618 (2015)CrossRefGoogle Scholar
  9. 9.
    Reiter, L., Palacios, M., Wangler, T., Flatt, R.J.: Putting concrete to sleep and waking it up with chemical admixtures. Spec. Publ. 302, 145–154 (2015)Google Scholar
  10. 10.
    Reiter, L., Kaessmann, R., Wangler, T., Flatt, R.J.: Strategies to wake up sleeping concrete. In: Proceedings of International Conference on the Chemistry of Cement, Beijing (2015)Google Scholar
  11. 11.
    Justnes, H.: Calcium nitrate as a multi-functional concrete admixture. Concrete 44(1), 34–36 (2010)Google Scholar
  12. 12.
    Myrdal, R.: Corrosion Inhibitors—State of the Art, COIN Project report no. 22, SINTEF (2010)Google Scholar
  13. 13.
    Stefanoni, M., Angst, U., Elsener, B.: Innovative sample design for corrosion rate measurement in carbonated concrete. In: 11th Annual International Concrete Sustainability Conference, Washington, DC (2016)Google Scholar
  14. 14.
    Stefanoni, M., Angst, U., Elsener, B.: A new setup for rapid durability screening of new blended cements. In: Concrete Innovation Conference, Trosmo (2017)Google Scholar
  15. 15.
    Shi, C.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996)CrossRefGoogle Scholar
  16. 16.
    Ravikumar, D., Peethamparan, S., Neithalath, N.: Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder. Cem. Concr. Compos. 32(6), 399–410 (2010)CrossRefGoogle Scholar
  17. 17.
    Haha, M.B., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011)CrossRefGoogle Scholar
  18. 18.
    Stefanoni, M., Angst, U., Elsener, B.: Corrosion rate of carbon steel in carbonated concrete—a critical review. Cem. Concr. Res. 103, 35–48 (2018)CrossRefGoogle Scholar
  19. 19.
    Stefanoni, M., Angst, U., Elsener, B.: Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media. Sci. Rep-UK 8(1), 7407 (2018)CrossRefGoogle Scholar
  20. 20.
    Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., Polder, R.B.: Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley (2013)Google Scholar
  21. 21.
    Xiaomeng, F.A.N., Xiaohong, G.U.A.N., Jun, M.A., Hengyu, A.I.: Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J. Environ. Sci. 21(8), 1028–1035 (2009)CrossRefGoogle Scholar
  22. 22.
    Yang, G.C., Lee, H.L.: Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res. 39(5), 884–894 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Roussel, N., Cussigh, F.: Distinct-layer casting of SCC: the mechanical consequences of thixotropy. Cem. Concr. Res. 38, 624–632 (2008)CrossRefGoogle Scholar
  24. 24.
    Nerella, V.N., Hempel, S., Mechtcherine, V.: Micro and macroscopic investigations on the interface between layers of 3D-printed cementitious elements. In: International Conference on Advances in Construction Materials and Systems, Chennai, 3–8 September 2017 (2017)Google Scholar
  25. 25.
    Keita, E., Bessaies-Bey, H., Zuo, W., Belin, P., Roussel, N.: Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. In: Proceedings of 1st International Conference on Concrete and Digital Fabrication, Zurich (2018)Google Scholar
  26. 26.
    Femenias, Y.S., Angst, U., Elsener, B.: Monitoring pH in corrosion engineering by means of thermally- produced iridium oxide electrodes. Mater. Corros. 69, 76–88 (2018)CrossRefGoogle Scholar
  27. 27.
    Femenias, Y.S., Angst, U., Elsener, B.: PH-monitoring in mortar with thermally-oxidized iridium electrodes. RILEM Tech. Lett. 2, 59–66 (2017)CrossRefGoogle Scholar
  28. 28.
    Femenias, Y.S., Angst, U., Caruso, F., Elsener, B.: Ag/AgCl ion-selective electrodes in neutral and alkaline environments containing interfering ions. Mater. Struct. 49, 2637–2651 (2016)CrossRefGoogle Scholar
  29. 29.
    Angst, U., Elsener, B., Larsen, C.K., Vennesland, Ø.: Potentiometric determination of the chloride ion activity in cement based materials. J. Appl. Electrochem. 40, 561–573 (2010)CrossRefGoogle Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  1. 1.Institute for Building MaterialsETH ZurichZurichSwitzerland
  2. 2.Department of Chemical and Geological ScienceUniversity of CagliariMonserratoItaly

Personalised recommendations