Advertisement

Discrete Element Simulations of Rheological Response of Cementitious Binders as Applied to 3D Printing

  • Pu Yang
  • Sooraj Kumar A. O. Nair
  • Narayanan NeithalathEmail author
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 19)

Abstract

This paper aims to model the extrusion-based 3D printing process of a plain ordinary Portland cement (OPC) paste using the discrete element method (DEM), and outlines the methodology adopted to evaluate the linkage between particle scale processes and extrusion process. A mini slump test is used to define the rheological model to be used in DEM, and extract the relevant parameters. They are then implemented in a scaled-down extrusion printing model to determine the influence of particle-scale effects on extrusion force. The DEM model is able to capture the differences in extrusion load-displacement responses similar to the experiments. Refinements to the model based on extracted parameters are also discussed.

Keywords

Plain Ordinary Portland Cement Extrusion Force Discrete Element Method (DEM) Slump Test Mini-slump Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors sincerely acknowledge support from National Science Foundation (CMMI: 1353170) towards the conduct of this study.

References

  1. 1.
    Panda, B., Tan, M.J.: Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 44(9), 10258–10265 (2018)CrossRefGoogle Scholar
  2. 2.
    Ma, G., Li, Z., Wang, L.: Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr. Build. Mater. 162, 613–627 (2018)CrossRefGoogle Scholar
  3. 3.
    Hambach, M., Volkmer, D.: Properties of 3D-printed fiber-reinforced Portland cement paste. Cem. Concr. Compos. 79, 62–70 (2017)CrossRefGoogle Scholar
  4. 4.
    Asprone, D., Auricchio, F., Menna, C., Mercuri, V.: 3D printing of reinforced concrete elements: technology and design approach. Constr. Build. Mater. 165, 218–231 (2018)CrossRefGoogle Scholar
  5. 5.
    Chi, H.-L., Wang, X., Jiao, Y.: BIM-enabled structural design: impacts and future developments in structural modelling, analysis and optimisation processes. Arch. Comput. Methods Eng. 22, 135–151 (2015)CrossRefGoogle Scholar
  6. 6.
    Buswell, R.A., Soar, R.C., Gibb, A.G., Thorpe, A.: Freeform construction: mega-scale rapid manufacturing for construction. Autom. Constr. 16, 224–231 (2007)CrossRefGoogle Scholar
  7. 7.
    Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P.: Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Mater. Des. 100, 102–109 (2016)CrossRefGoogle Scholar
  8. 8.
    Lim, S., Buswell, R.A., Valentine, P.J., Piker, D., Austin, S.A., De Kestelier, X.: Modelling curved-layered printing paths for fabricating large-scale construction components. Addit. Manuf. 12, 216–230 (2016)CrossRefGoogle Scholar
  9. 9.
    Nair, S.A.O., Alghamdi, H., Arora, A., Mehdipour, I., Sant, G., Neithalath, N.: Microstructural packing, rheology, and ram extrusion characteristics of 3D-printable cementitious binders. Cem. Concr. Res. (Submitted)Google Scholar
  10. 10.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  11. 11.
    Ness, C., Ooi, J.Y., Sun, J., Marigo, M., McGuire, P., Xu, H., Stitt, H.: Linking particle properties to paste extrusion flow characteristics using discrete element simulations, ArXiv Prepr. 160806188. (2016)Google Scholar
  12. 12.
    Mechtcherine, V., Gram, A., Krenzer, K., Schwabe, J.-H., Bellmann, C., Shyshko, S.: Simulation of fresh concrete flow using discrete element method (DEM): theory and applications. Mater. Struct. 47, 615–630 (2014)CrossRefGoogle Scholar
  13. 13.
    Mechtcherine, V., Shyshko, S.: Simulating the behaviour of fresh concrete with the distinct element method-deriving model parameters related to the yield stress. Cem. Concr. Compos. 55, 81–90 (2015)CrossRefGoogle Scholar
  14. 14.
    Tan, Y., Cao, G., Zhang, H., Wang, J., Deng, R., Xiao, X., Wu, B.: Study on the thixotropy of the fresh concrete using DEM. Procedia Eng. 102, 1944–1950 (2015)CrossRefGoogle Scholar
  15. 15.
    Remond, S., Pizette, P.: A DEM hard-core soft-shell model for the simulation of concrete flow. Cem. Concr. Res. 58, 169–178 (2014)CrossRefGoogle Scholar
  16. 16.
    Zelelew, H.M.: Simulation of the permanent deformation of asphalt concrete mixtures using discrete element method (DEM). Washington State University (2008)Google Scholar
  17. 17.
    Cundall, P.A.: PFC user manual. Itasca Consulting Group, Inc., Mineapolis (2004)Google Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  • Pu Yang
    • 1
  • Sooraj Kumar A. O. Nair
    • 1
  • Narayanan Neithalath
    • 1
    Email author
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations