Advertisement

Non-native Pines Are Homogenizing the Ecosystems of South America

  • Rafael A. GarcíaEmail author
  • Jorgelina Franzese
  • Nahuel Policelli
  • Yamila Sasal
  • Rafael D. Zenni
  • Martin A. Nuñez
  • Kimberley Taylor
  • Aníbal Pauchard
Chapter
Part of the Ecology and Ethics book series (ECET, volume 3)

Abstract

A large area previously dominated by native ecosystems in South America is now covered by monocultures of non-native tree species, mainly of the genus Pinus. Currently, pine plantations and the invasions that have been generated from these are causing a homogenization process at the landscape, stand, and even micro-site scales. The continuous and extensive areas covered by pine plantations have replaced the native ecosystem heterogeneity in many landscapes of South America. Within these plantations, the diversity of plants and animals is lower than that of the nearest remnant native ecosystems. These plantations can also act as a barrier to the movement of species across the landscape. In addition, in most places where pine plantations have been established, invasions have occurred into the surrounding ecosystems. Overall, pine invasions are more evident in open ecosystems (e.g., grasslands, steppes, and degraded native forest), but they can also occur in denser vegetation (e.g., temperate forests). Native species loss as a consequence of pine invasions has been recorded in tropical, mediterranean, and temperate ecosystems. Increased pine abundance and the resultant native species loss bring changes to all levels of organization within the ecosystem, from soil microorganisms to invertebrates, plants, and vertebrates. These changes reduce the ecosystem’s spatial heterogeneity and thus cause biotic homogenization. These biodiversity losses can affect the stability of ecosystems by decreasing their resilience to environmental change and disturbances. To mitigate the impacts caused by pines, it is important to implement comprehensive landscape planning, understanding that pine plantations coexist and interact with other land uses in a complex ecological and social setting.

Keywords

Homogenization Pinaceae Invasive trees Plant invasions Impacts 

Notes

Acknowledgments

R.G. and A.P. were funded by CONICYT PIA APOYO CCTE AFB170008. R.G. was funded by FONDECYT 11170516. A.P. was funded by FONDECYT 1140485. J.F. was funded by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-3466).

References

  1. Aber J, Christensen N, Fernandez I, Franklin J, Hidinger L, Hunter M, MacMahon J, Mladenoff D, Pastor J, Perry D, Slangen R, van Miegroet H (2000) Applying ecological principles to management of the U.S. National Forests. Issues Ecol 6:1–22Google Scholar
  2. Abreu RCR, Durigan G (2011) Changes in the plant community of a Brazilian grassland savannah after 22 years of invasion by Pinus elliottii Engelm. Plant Ecol Divers 4:269–278CrossRefGoogle Scholar
  3. Abreu RCR, Assis GB, Frison S, Aguirre A, Durigan G (2011) Can native vegetation recover after slash pine cultivation in the Brazilian Savanna? For Ecol Manag 262:1452–1459CrossRefGoogle Scholar
  4. Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, Abarzúa AM, Marquet P (2010) From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27(2):148–160CrossRefGoogle Scholar
  5. Braga EP, Zenni RD, Hay JD (2014) A new invasive species in South America: Pinus oocarpa Schiede ex Schltdl. Biol Invasion Rec 3:207–211Google Scholar
  6. Braun A, Troeger D, García R, Aguayo M, Barra R, Vogt J (2017) Assessing the impact of plantation forestry on plant biodiversity. A comparison of sites in Central Chile and Chilean Patagonia. Glob Ecol Conserv 10:159–172CrossRefGoogle Scholar
  7. Bravo-Monasterio P, Pauchard A, Fajardo A (2016) Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol Invasions 18:1883–1894CrossRefGoogle Scholar
  8. Briones R, Jerez V (2007) Efecto de la edad de la plantación de Pinus radiata en la abundancia de Ceroglossus chilensis (Coleoptera: Carabidae) en la Región del Biobío, Chile. Bosque 28(3):207–214CrossRefGoogle Scholar
  9. Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE (2004) Effects of invasive plants on fire regimes. Bioscience 54:677–688CrossRefGoogle Scholar
  10. Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M (2005) Slowing down a pine invasion despite uncertainty in demography and dispersal. J Appl Ecol 42:1020–1030CrossRefGoogle Scholar
  11. Bustamante R, Castor C (1998) The decline of an endangered ecosystem: the Ruil (Nothofagus alessandrii) forest in Central Chile. Biodivers Conserv 7:1607–1626CrossRefGoogle Scholar
  12. Bustamante RO, Simonetti JA (2005) Is Pinus radiata invading the native vegetation in Central Chile? Demographic responses in a fragmented forest. Biol Invasions 7:243–249CrossRefGoogle Scholar
  13. Bustamante RO, Serey IA, Pickett STA (2003) Forest fragmentation, plant regeneration and invasion processes across edges in Central Chile. In: Bradshaw GA, Marquet PA, Mooney HA (eds) How landscapes change: human disturbance and ecosystem disruption in the Americas. Ecological studies, vol 162. Springer, Berlin/Heidelberg, pp 145–160CrossRefGoogle Scholar
  14. Carnus JM, Parrotta J, Brockerhoff EG, Arbez M, Jactel H, Kremer A, Lamb D, O’Hara K, Walters B (2006) Planted forests and biodiversity. J For 104(2):65–77Google Scholar
  15. Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33(12):1733–1740CrossRefGoogle Scholar
  16. Cóbar-Carranza A, García R, Pauchard A, Peña E (2014) Effect of Pinus contorta invasion on forest fuel properties and its potential implications on the fire regime of Araucaria araucana and Nothofagus antarctica forests. Biol Invasions 16:2273–2291CrossRefGoogle Scholar
  17. CONAF (Corporación Nacional Forestal) (2017) Análisis de la Afectación y Severidad de los Incendios Forestales ocurridos en enero y febrero de 2017 sobre los usos de suelo y los ecosistemas naturales presentes entre las regiones de Coquimbo y Los Ríos de Chile. Informe Técnico. 56 p. Santiago, ChileGoogle Scholar
  18. Cubbage F, Mac Donagh P, SawinskiJúnior J, Rubilar R, Donoso P, Ferreira A, Hoeflich V, Olmos VM, Ferreira G, Balmelli G, Siry J, Báez MN, Alvarez J (2007) Timber investment returns for selected plantation and native forests in South America and the southern United States. New For 33(3):237–255CrossRefGoogle Scholar
  19. de Oliveira SM, Boll PK, Baptista VD, Leal-Zanchet AM (2014) Effects of pine invasion on land planarian communities in an area covered by Araucaria moist forest. Zool Stud 53:19CrossRefGoogle Scholar
  20. de Villalobos AE, Zalba SM, Peláez DV (2011) Pinus halepensis invasion in mountain pampean grassland: effects of feral horses grazing on seedling establishment. Environ Res 111(7):953–959CrossRefPubMedGoogle Scholar
  21. Debinski DM, Ray C, Saveraid EH (2001) Species diversity and the scale of the landscape mosaic: do scales of movement and patch size affect diversity? Biol Conserv 98:179–190CrossRefGoogle Scholar
  22. Dickie IA, Johnston P (2008) Invasive fungi research priorities, with a focus on Amanita muscaria. Landcare research control report LC0809/027. Lincoln, New ZealandGoogle Scholar
  23. Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93(2):244–255CrossRefGoogle Scholar
  24. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484CrossRefPubMedGoogle Scholar
  25. Dickie IA, Yeates GW, St John MG, Stevenson BA, Scott JT, Rillig MC, Peltzer DA, Orwin KH, Kirschbaum MU, Hunt JE, Burrows LE (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48:926–934CrossRefGoogle Scholar
  26. Dickie IA, Stjohn MG, Yeates GW, Morse CW, Bonner KI, Orwin K, Peltzer DA (2014) Belowground legacies of Pinus contorta invasion and removal result in multiple mechanisms of invasional meltdown. AoB Plants 6:1–15CrossRefGoogle Scholar
  27. Dickie IA, Nuñez MA, Pringle A, Lebel T, Tourtellot SG, Johnston PR (2016) Towards management of invasive ectomycorrhizal fungi. Biol Invasions 18(12):3383–3395CrossRefGoogle Scholar
  28. Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, Hulme PE, Klironomos J, Makiola A, Nuñez MA, Pringle A, Thrall PH, Tourtellot SG, Waller L, Williams NM (2017) The emerging science of linked plant-fungal invasions. New Phytol 15(4):1314–1332.  https://doi.org/10.1111/nph.14657 CrossRefGoogle Scholar
  29. Echeverría C, Coomes D, Newton A, Salas J, Rey JM, Lara A (2006) Rapid fragmentation and deforestation of Chilean temperate forests. Biol Conserv 130:481–494CrossRefGoogle Scholar
  30. Echeverría C, Coomes D, Newton A, Rey-Benayas JM, Lara A (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape in southern Chile. Glob Ecol Biogeogr 16:426–439CrossRefGoogle Scholar
  31. Essl F, Moser D, Dullinger S, Mang T, Hulme PE (2010) Selection for commercial forestry determines global patterns of alien conifer invasions. Divers Distrib 16:911–921CrossRefGoogle Scholar
  32. Essl F, Mang T, Dullinger S, Moser D, Hulme PE (2011) Macroecological drivers of alien conifer naturalizations worldwide. Ecography 34:1076–1084CrossRefGoogle Scholar
  33. FAO (Food and Agriculture Organization of the United Nations) (2010) Global forest resources assessment 2010. FAO, RomeGoogle Scholar
  34. Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Chang Biol 11:1565–1576CrossRefGoogle Scholar
  35. Franzese J, Raffaele E (2017) Fire as a driver of pine invasions in the southern hemisphere: a review. Biol Invasions 2017:1–10Google Scholar
  36. Franzese J, Urrutia J, García RA, Taylor K, Pauchard A (2017) Pine invasion impacts on plant diversity in Patagonia: invader size and invaded habitat matter. Biol Invasions 19:1015–1027CrossRefGoogle Scholar
  37. Freedman B, Zelazny V, Beaudette D, Fleming T, Flemming S, Forbes G, Gerrow JS, Johnson G, Woodley S (1996) Biodiversity implications of changes in the quantity ofdead organic matter in managed forests. Environ Rev 4(3):238–265CrossRefGoogle Scholar
  38. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK, Klein AM, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C (2005) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568.  https://doi.org/10.1038/ncomms9568 CrossRefGoogle Scholar
  39. Gerrand A, Keenan RJ, Kanowski P, Stanton R (2003) Australian forest plantations: an overview of industry, environmental and community issues and benefits. Aust For 66:1–8CrossRefGoogle Scholar
  40. Gjerde I, Saetersdal M (1997) Effects on avian diversity of introducing spruce (Picea sp.) plantations in the native pine (Pinus sylvestris) forests of western Norway. Biol Conserv 79:241–250CrossRefGoogle Scholar
  41. Gómez P, Bustamante R, San Martin J, Hahn S (2011) Population structure of Pinus radiate D. Don in fragments of Maulino Forest in Central Chile. Gayana Botanica 68(1):97–101CrossRefGoogle Scholar
  42. Gundale MJ, Pauchard A, Langdon B, Peltzer DA, Maxwell BD, Nuñez MA (2014) Can model species be used to advance the field of invasion ecology? Biol Invasions 16(3):591–607CrossRefGoogle Scholar
  43. Gundale MJ, Almeida JP, Wallander H, Wardle DA, Kardol P, Nilsson MC, Fajardo A, Pauchard A, Peltzer DA, Ruotsalainen S, Mason B, Rosenstock N (2016) Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. J Ecol 104:1219–1232CrossRefGoogle Scholar
  44. Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95CrossRefGoogle Scholar
  45. Hartmann H, Gaëtan D, Bigué B, Messier C (2010) Negative or positive effects of plantation and intensive forestry on biodiversity: a matter of scale and perspective. For Chron 86:354–364CrossRefGoogle Scholar
  46. Hayward J, Horton TR, Pauchard A, Nuñez MA (2015a) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96(5):1438–1444CrossRefGoogle Scholar
  47. Hayward J, Horton TR, Nuñez MA (2015b) Ectomycorrhizal fungal communities co invading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytol 208(2):497–506CrossRefGoogle Scholar
  48. Heilmayr R, Echeverría C, Fuentes R, Lambin E (2016) A plantation-dominated forest transition in Chile. Appl Geogr 75:71–82CrossRefGoogle Scholar
  49. Heinrichs S, Pauchard A (2015) Struggling to maintain native plant diversity in a peri-urban reserve surrounded by a highly anthropogenic matrix. Biodivers Conserv 24:2769–2788CrossRefGoogle Scholar
  50. Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475PubMedGoogle Scholar
  51. Kruger FJ, Breytenbach GJ, Macdonald IAW, Richardson DM (1989) The characteristics of invaded Mediterranean climate regions. Biological invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Krüger FJ, Rejmanek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 181–213Google Scholar
  52. Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12:3961–3971CrossRefGoogle Scholar
  53. Larsson S, Danell K (2001) Science and the management of boreal forest biodiversity. Scand J For Res 16(Suppl 3):5–9CrossRefGoogle Scholar
  54. Ledgard NJ (2001) The spread of lodgepole pine (Pinus contorta Dougl.) in New Zealand. For Ecol Manag 141:43–57CrossRefGoogle Scholar
  55. Ledgard N (2003) What’s wrong with wilding trees? NZ Tree Grow 24(1):18–19Google Scholar
  56. Little C, Lara A, McPhee J, Urrutia R (2008) Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. J Hydrol 374:162–170CrossRefGoogle Scholar
  57. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323CrossRefGoogle Scholar
  58. Loydi A, Distel RA, Zalba SM (2010) Large herbivore grazing and non-native plant invasions in montane grasslands of Central Argentina. Nat Areas J 30(2):148–155CrossRefGoogle Scholar
  59. Lusk C (2008) Constraints on the evolution and geographical range of Pinus. New Phytol 178(1):1–3CrossRefPubMedGoogle Scholar
  60. Mandle L, Bufford JL, Schmidt IB, Daehler CC (2011) Woody exotic plant invasions and fire: reciprocal impacts and consequences for native ecosystems. Biol Invasions 13:1815–1827CrossRefGoogle Scholar
  61. McWethy DB, Pauchard A, García RA, Holz A, González ME, Veblen TT, Stahl J, Currey B (2018) Landscape drives of recent fire activity (2001-2017) in south-central Chile. PLoS ONE 13(8):e020119Google Scholar
  62. Nahuelhual L, Carmona A, Lara A, Echeverría C, González M (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landsc Urban Plan 107:12–20CrossRefGoogle Scholar
  63. Najera A, Simonetti JA (2010) Enhancing avifauna in commercial plantations. Conserv Biol 24:319–324CrossRefPubMedGoogle Scholar
  64. Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biol Invasions 16:645–661CrossRefGoogle Scholar
  65. Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359CrossRefPubMedGoogle Scholar
  66. Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8(6):e66832CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nuñez MA, Chiuffo MC, Torres A, Paul T, Dimarco R, Raal P, Policelli N, Moyano J, García RA, van Wilgen BW, Pauchard A, Richardson D (2017) Ecology and management of invasive pines around the world: progress and challenges. Biol Invasions 19:3099–3120CrossRefGoogle Scholar
  68. Orlovich DA, Cairney JG (2004) Ectomycorrhizal fungi in New Zealand: current perspectives and future directions. NZ J Bot 42(5):721–738CrossRefGoogle Scholar
  69. Paritsis J, Aizen MA (2008) Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. For Ecol Manag 255:1575–1583CrossRefGoogle Scholar
  70. Pauchard A, Langdon B, Peña E (2008) Potencial invasivo de Pseudotsuga menziesii (Mirb.) Franco en Bosques Nativos del Centro-Sur de Chile: patrones y recomendaciones. In: Mujica R, Grosse H, Muller-Using B (eds) Bosques Seminaturales: una opción para la rehabilitación de bosques nativos degradados. Instituto Forestal, Santiago, pp 89–114Google Scholar
  71. Pauchard A, García RA, Zalba S, Sarasola M, Zenni R, Ziller S, Núñez M (2015) Pine invasions in South America: reducing their ecological impacts trough active management. In: Canning-Clode J (ed) Biological invasions in changing ecosystems. Vectors, ecological impacts, management and predictions. De Gruyter Open Ltd, Warsaw/Berlin, pp 318–342Google Scholar
  72. Pauchard A, Escudero A, García RA, de la Cruz M, Langdon B, Cavieres LA, Esquivel J (2016) Pine invasions in treeless environments: dispersal overruns microsite heterogeneity. Ecol Evol 6(2):447–459CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pawson SM, McCarthy JK, Ledgard NJ, Didham RK (2010) Density-dependent impacts of exotic conifer invasion on grassland invertebrate assemblages. J Appl Ecol 47:1053–1062CrossRefGoogle Scholar
  74. Peay KG, Bidartondo MI, Arnold EA (2010) Not every fungus is everywhere: scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. New Phytol 185:878–882CrossRefPubMedPubMedCentralGoogle Scholar
  75. Peña E, Valenzuela L (2008) Incremento de los incendios forestales en bosques naturales y plantaciones forestales en Chile. In: González-Cabán A (ed) Memorias del segundo simposio internacional sobre políticas, planificación y economía de los programas de protección contra incendios forestales: una visión global. General technical report PSW-GTR-208. United States Department of Agriculture, Forest Service, Pacific Southwesr Research Station, Albany, pp 595–612Google Scholar
  76. Peña E, Hidalgo M, Langdon B, Pauchard A (2008) Patterns of spread of Pinus contorta Dougl. ex Loud. invasion in a natural reserve in southern South America. For Ecol Manag 256:1049–1054CrossRefGoogle Scholar
  77. Potton C (1994) A public perception of plantation forestry. NZ For 39(2):2–3Google Scholar
  78. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive. Ecology 77:1655–1661CrossRefGoogle Scholar
  79. Richardson DM (2001) Plant invasions. In: Levin S (ed) Encyclopedia of biodiversity. Academic, San Diego, pp 677–688CrossRefGoogle Scholar
  80. Richardson DM (2006) Pinus: a model group for unlocking the secrets of alien plant invasions? Preslia 78:375–388Google Scholar
  81. Richardson DM, Brown PJ (1986) Invasion of Mesic mountain fynbos by Pinus radiata. S Afr J Bot 52:529–536CrossRefGoogle Scholar
  82. Richardson DM, Higgins S (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473Google Scholar
  83. Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the southern hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527CrossRefGoogle Scholar
  84. Richardson DM, Van Wilgen BW, Nuñez MA (2008) Alien conifer invasions in South America: short fuse burning? Biol Invasions 10:573–577CrossRefGoogle Scholar
  85. Rivera Y, Kretzer AM, Horton TR (2015) New microsatellite markers for the ectomycorrhizal fungus Pisolithus tinctorius sensu stricto reveal the genetic structure of US and Puerto Rican populations. Fungal Ecol 13:1–9Google Scholar
  86. Rodríguez-Calcerrada J, Nanos N, del Rey M, López de Heredia U, Escribano R, Gil L (2011) Small-scale variation of vegetation in a mixed forest under storey is partly controlled by the effect of overstory composition on litter accumulation. J For Res 16:473–483CrossRefGoogle Scholar
  87. Rozzi R, Armesto JJ, Figueroa J (1994) Biodiversidad y conservación de los bosques nativos de Chile: una aproximación jerárquica. Bosque 15:55–64CrossRefGoogle Scholar
  88. Salas C, Donoso PJ, Vargas R, Arriagada C, Pedraza R, Soto D (2016) The forest sector in Chile: an overview and current challenges. J For 114(5):562–571Google Scholar
  89. Sarasola M, Rusch V, Schlichter T, Ghersa C (2006) Invasión de coníferas forestales en áreas de estepa y bosques de ciprés de la cordillera en la Región Andino Patagónica. Ecol Austral 16:143–156Google Scholar
  90. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  91. Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, van Wilgen BW, Zalba S, Zenni R, Bustamante R, Peña E, Ziller S (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504CrossRefGoogle Scholar
  92. Simonetti J, Grez A, Estades C (2013) Providing habitat for native mammals through understory enhancement in forestry plantations. Conserv Biol 27(5):1117–1121CrossRefPubMedGoogle Scholar
  93. Smith-Ramirez C (2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodivers Conserv 13(2):373–393CrossRefGoogle Scholar
  94. Spellerberg I (1996) Plantation forests protect our biodiversity? Too much of a generalization to be true. N Z For 40(4):5–7Google Scholar
  95. Sutton WRJ (1995) Plantation forests protect our biodiversity. N Z For 40(3):2–5Google Scholar
  96. Taylor KT, Maxwell BD, Pauchard A, Nuñez MA, Rew LJ (2016) Native versus non-native invasions: similarities and differences in the biodiversity impacts of Pinus contorta in introduced and native ranges. Divers Distrib 22:578–588CrossRefGoogle Scholar
  97. Taylor KT, Maxwell BD, McWethy DB, Pauchard A, Nuñez MA, Whitlock C (2017) Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire. Ecology 98:678–687CrossRefPubMedGoogle Scholar
  98. Tomasevic JA, Estades CF (2008) Effects of the structure of pine plantations on their “softness” as barriers for ground-dwelling forest birds in south-central Chile. For Ecol Manag 255(3):810–816CrossRefGoogle Scholar
  99. Urrutia J, Pauchard A, García RA (2013) Diferencias en la composición vegetal de un bosque de Araucaria araucana (Molina) K. Koch y Nothofagus antarctica (G. Forst.) Oerst. asociadas a un gradiente de invasión de Pinus contorta Douglas ex Loudon. Gayana Botanica 70(1):92–100CrossRefGoogle Scholar
  100. Valduga MO, Zenni RD, Vitule JRS (2016) Ecological studies reveal broad and heterogeneous impacts of exotic tree species plantations – examples from a megadiverse country. Ann Braz Acad Sci 88:1675–1688CrossRefGoogle Scholar
  101. Veblen TT, Holz A, Paritsis J, Raffaele E, Kitzberger T, Blackhall M (2011) Adapting to global environmental change in Patagonia: what role for disturbance ecology. Austral Ecol 36:891–903CrossRefGoogle Scholar
  102. Vihervaara P, Marjokorpi A, Kumpula T, Walls M, Kamppinen M (2012) Ecosystem services of fast-growing tree plantations: a case study on integrating social valuations with land-use changes in Uruguay. For Pol Econ 14:58–68CrossRefGoogle Scholar
  103. Zenni RD (2015) The naturalized flora of Brazil: a step towards identifying future invasive non-native species. Rodriguésia 66:1137–1144CrossRefGoogle Scholar
  104. Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Braz J Bot 34:431–446CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rafael A. García
    • 1
    • 2
    Email author
  • Jorgelina Franzese
    • 3
  • Nahuel Policelli
    • 4
  • Yamila Sasal
    • 3
  • Rafael D. Zenni
    • 5
  • Martin A. Nuñez
    • 6
  • Kimberley Taylor
    • 7
  • Aníbal Pauchard
    • 1
    • 2
  1. 1.Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  3. 3.Laboratorio EcotonoInstituto de Investigaciones en Biodiversidad y Medioambiente (Universidad Nacional del Comahue – CONICET)S. C. BarilocheArgentina
  4. 4.Grupo de Ecología de InvasionesInstituto de Investigaciones en Biodiversidad y Medioambiente (Universidad Nacional del Comahue – CONICET)S. C. BarilocheArgentina
  5. 5.Setor de Ecologia, Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
  6. 6.Grupo de Ecología de Invasiones, INIBIOMACONICET-Universidad Nacional del ComahueBarilocheArgentina
  7. 7.Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaUSA

Personalised recommendations