Skip to main content

SAT-based {CNOT, T} Quantum Circuit Synthesis

  • Conference paper
  • First Online:
Reversible Computation (RC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Included in the following conference series:

Abstract

The prospective of practical quantum computers has lead researchers to investigate automatic tools to program them. A quantum program is modeled as a Clifford+T quantum circuit that needs to be optimized in order to comply with quantum technology constraints. Most of the optimization algorithms aim at reducing the number of T gates. Nevertheless, a secondary optimization objective should be to minimize the number of two-qubit operations (the CNOT gates) as they show lower fidelity and higher error rate when compared to single-qubit operations. We have developed an exact SAT-based algorithm for quantum circuit rewriting that aims at reducing CNOT gates without increasing the number of T gates. Our algorithm finds the minimum {CNOT, T} circuit for a given phase polynomial description of a unitary transformation. Experiments confirm a reduction of CNOT in T-optimized quantum circuits. We synthesize quantum circuits for all single-target gates whose control functions are one of the representatives of the 48 spectral equivalence classes of all 5-input Boolean functions. Our experiments show an average CNOT reduction of 26.84%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amy, M., Maslov, D., Mosca, M.: Polynomial-time \(T\)-depth optimization of Clifford+\(T\) circuits via matroid partitioning. IEEE Trans. CAD Integr. Circ. Syst. 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr. Circ. Syst. 32(6), 818–830 (2013)

    Article  Google Scholar 

  3. Amy, M., Azimzadeh, P., Mosca, M.: On the CNOT-complexity of CNOT-phase circuits. arXiv preprint 1712.01859v1 (2017)

    Google Scholar 

  4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    Google Scholar 

  5. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. arXiv preprint arXiv:1608.00263v3 (2017)

  6. Castelvecchi, D.: Quantum computers ready to leap out of the lab in 2017. Nat. News 541(7635), 9 (2017)

    Article  Google Scholar 

  7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  8. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math. Commun. 2(2), 183–200 (2008)

    Article  MathSciNet  Google Scholar 

  9. Edwards, C.R.: The application of the Rademacher-Walsh transform to Boolean function classification and threshold logic synthesis. IEEE Trans. Comput. 24(1), 48–62 (1975)

    Article  MathSciNet  Google Scholar 

  10. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)

    Article  Google Scholar 

  11. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)

    Article  Google Scholar 

  12. IBM: IBM builds its most powerful universal quantum computing processors (2017). Press release by IBM, posted online 17 May 2017

    Google Scholar 

  13. Intel: Intel delivers 17-qubit superconducting chip with advanced packaging to QuTech (2017). Press release by Intel, posted online 10 October 2017

    Google Scholar 

  14. Kelly, J.: A preview of Bristlecone, Google’s new quantum processor. Google Research Blog (2018)

    Google Scholar 

  15. Knight, W.: IBM rasises the bar with a 50-qubit quantum computer. Sighted at MIT Review Technology (2017). https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer

  16. Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edn. Addison-Wesley, Redwood City (1998)

    MATH  Google Scholar 

  17. Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K.E., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Nat. Acad. Sci. 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  18. Meuli, G., et al.: Estimating single-target gate T-count using spectral classification. In: International Workshop on Logic and Synthesis (2018)

    Google Scholar 

  19. Meuli, G., Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: A best-fit mapping algorithm to facilitate ESOP-decomposition in Clifford+T quantum network synthesis. In: Proceedings of the 23rd Asia and South Pacific Design Automation Conference, pp. 664–669. IEEE Press (2018)

    Google Scholar 

  20. Nam, Y.S., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated optimization of large quantum circuits with continuous parameters. arXiv preprint arXiv:1710.07345 (2017)

  21. Patel, K.N., Markov, I.L., Hayes, J.P.: Efficient synthesis of linear reversible circuits. arXiv preprint quant-ph/0302002 (2003)

    Google Scholar 

  22. Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-not-based circuits. Phys. Rev. A 69(6), 062321 (2004)

    Article  Google Scholar 

  23. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. Multiple Valued Logic Soft Comput. 18(1), 55–65 (2012)

    Google Scholar 

  24. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation and Test in Europe, pp. 470–475 (2017)

    Google Scholar 

  25. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Hierarchical reversible logic synthesis using LUTs. In: Design Automation Conference, pp. 78:1–78:6 (2017)

    Google Scholar 

Download references

Acknowledgments

This research was supported by H2020-ERC-2014-ADG 669354 CyberCare, the Swiss National Science Foundation (200021-169084 MAJesty), and the ICT COST Action IC1405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Meuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meuli, G., Soeken, M., De Micheli, G. (2018). SAT-based {CNOT, T} Quantum Circuit Synthesis. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics