Skip to main content

SAT-based {CNOT, T} Quantum Circuit Synthesis

  • Conference paper
  • First Online:
Reversible Computation (RC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Included in the following conference series:

Abstract

The prospective of practical quantum computers has lead researchers to investigate automatic tools to program them. A quantum program is modeled as a Clifford+T quantum circuit that needs to be optimized in order to comply with quantum technology constraints. Most of the optimization algorithms aim at reducing the number of T gates. Nevertheless, a secondary optimization objective should be to minimize the number of two-qubit operations (the CNOT gates) as they show lower fidelity and higher error rate when compared to single-qubit operations. We have developed an exact SAT-based algorithm for quantum circuit rewriting that aims at reducing CNOT gates without increasing the number of T gates. Our algorithm finds the minimum {CNOT, T} circuit for a given phase polynomial description of a unitary transformation. Experiments confirm a reduction of CNOT in T-optimized quantum circuits. We synthesize quantum circuits for all single-target gates whose control functions are one of the representatives of the 48 spectral equivalence classes of all 5-input Boolean functions. Our experiments show an average CNOT reduction of 26.84%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amy, M., Maslov, D., Mosca, M.: Polynomial-time \(T\)-depth optimization of Clifford+\(T\) circuits via matroid partitioning. IEEE Trans. CAD Integr. Circ. Syst. 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr. Circ. Syst. 32(6), 818–830 (2013)

    Article  Google Scholar 

  3. Amy, M., Azimzadeh, P., Mosca, M.: On the CNOT-complexity of CNOT-phase circuits. arXiv preprint 1712.01859v1 (2017)

    Google Scholar 

  4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    Google Scholar 

  5. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. arXiv preprint arXiv:1608.00263v3 (2017)

  6. Castelvecchi, D.: Quantum computers ready to leap out of the lab in 2017. Nat. News 541(7635), 9 (2017)

    Article  Google Scholar 

  7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  8. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math. Commun. 2(2), 183–200 (2008)

    Article  MathSciNet  Google Scholar 

  9. Edwards, C.R.: The application of the Rademacher-Walsh transform to Boolean function classification and threshold logic synthesis. IEEE Trans. Comput. 24(1), 48–62 (1975)

    Article  MathSciNet  Google Scholar 

  10. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)

    Article  Google Scholar 

  11. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)

    Article  Google Scholar 

  12. IBM: IBM builds its most powerful universal quantum computing processors (2017). Press release by IBM, posted online 17 May 2017

    Google Scholar 

  13. Intel: Intel delivers 17-qubit superconducting chip with advanced packaging to QuTech (2017). Press release by Intel, posted online 10 October 2017

    Google Scholar 

  14. Kelly, J.: A preview of Bristlecone, Google’s new quantum processor. Google Research Blog (2018)

    Google Scholar 

  15. Knight, W.: IBM rasises the bar with a 50-qubit quantum computer. Sighted at MIT Review Technology (2017). https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer

  16. Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edn. Addison-Wesley, Redwood City (1998)

    MATH  Google Scholar 

  17. Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K.E., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Nat. Acad. Sci. 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  18. Meuli, G., et al.: Estimating single-target gate T-count using spectral classification. In: International Workshop on Logic and Synthesis (2018)

    Google Scholar 

  19. Meuli, G., Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: A best-fit mapping algorithm to facilitate ESOP-decomposition in Clifford+T quantum network synthesis. In: Proceedings of the 23rd Asia and South Pacific Design Automation Conference, pp. 664–669. IEEE Press (2018)

    Google Scholar 

  20. Nam, Y.S., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated optimization of large quantum circuits with continuous parameters. arXiv preprint arXiv:1710.07345 (2017)

  21. Patel, K.N., Markov, I.L., Hayes, J.P.: Efficient synthesis of linear reversible circuits. arXiv preprint quant-ph/0302002 (2003)

    Google Scholar 

  22. Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-not-based circuits. Phys. Rev. A 69(6), 062321 (2004)

    Article  Google Scholar 

  23. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. Multiple Valued Logic Soft Comput. 18(1), 55–65 (2012)

    Google Scholar 

  24. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation and Test in Europe, pp. 470–475 (2017)

    Google Scholar 

  25. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Hierarchical reversible logic synthesis using LUTs. In: Design Automation Conference, pp. 78:1–78:6 (2017)

    Google Scholar 

Download references

Acknowledgments

This research was supported by H2020-ERC-2014-ADG 669354 CyberCare, the Swiss National Science Foundation (200021-169084 MAJesty), and the ICT COST Action IC1405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Meuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meuli, G., Soeken, M., De Micheli, G. (2018). SAT-based {CNOT, T} Quantum Circuit Synthesis. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics