Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11100))

Abstract

Causality notion lies at the heart of science, but when statistics tries to address this issue some profound questions remain unanswered. How statistical inference in probabilistic terms is linked with causality? What modern causality models offer that is substantially different from the traditional dependency models like regression or decision trees, and if yes, do they deliver these promises? How causality models are related to statistical and machine learning techniques? What is the relationship between causality modeling, statistical inference, and machine learning on one side – and operations research and optimization on the other? Or, more generally: if the causal picture of the world is a commonly accepted goal of any science, could the non-causal statistical models be of any use? If yes – in what sense? If not – why are they so widely used? The insufficient level of detail in discussions of these and similar problems creates a lot of confusion, especially now, when lauded terms like Data Mining, Big Data, Deep Learning and others appear even in the non-professional media. This paper inspects the underlying logic of different approaches, directly or indirectly, related with causality. It shows that even established methods are vulnerable to small deviations from the ideal setting; that the leading approaches to statistical causality, Structural Equations Modeling (SEM), Directed Acyclic Graphs (DAG) and Potential Outcomes (PO) theories do not provide a coherent causality theory, and argues that this theory is impossible on pure statistical grounds. It also discusses a new approach in which the concept of causality is replaced by the concept of dependent variable generation. Separation of the variables generating the outcome from others just correlated with it (which often separates also causal from non-causal variables) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84800-998-1

    Book  MATH  Google Scholar 

  • Bennett, A.: The mother of all “isms”: organizing political science around causal mechanisms. In: Groff, R. (ed.) Revitalizing Causality: Realism About Causality in Philosophy and Social Science, pp. 205–219. Routledge (2008)

    Google Scholar 

  • Berk, R.: Regression Analysis: A Constructive Critique. Sage Publications, Newbury Park (2004)

    Google Scholar 

  • Berzuini, C., Dawid, P., Bernardinelli, L. (eds.): Causality: Statistical Perspectives and Applications. Wiley, Chichester (2012)

    Google Scholar 

  • Bigelow, J., Ellis, B., Pargetter, R.: Forces. Philos. Sci. 55, 614–630 (1988)

    Article  MathSciNet  Google Scholar 

  • Bontempi, G., Flauder, M.: From dependency to causality: a machine learning approach. J. Mach. Learn. Res. 16, 2437–2457 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bunge, M.: Causality and Modern Science. Transaction Publishers, New Brunswick (2009)

    Google Scholar 

  • Buonaccorsi, J.P.: Measurement Error: Models, Methods, and Applications. Chapman and Hall, Boca Raton (2010)

    Book  Google Scholar 

  • Carroll, R., et al.: Measurement Error in Nonlinear Models: A Modern Perspective. Chapman and Hall, New York (2006)

    Book  Google Scholar 

  • Cheng, C.L., Van Ness, J.W.: Statistical Regression with Measurement Error. Arnold Publishers, London (1999)

    MATH  Google Scholar 

  • Conrady, S., Jouffe, L.: Bayesian Networks & BayesiaLab: A Practical Introduction for Researchers. Bayesia USA, Franklin (2015)

    Google Scholar 

  • Consumer Price Index Manual: Theory and Practice. International Monetary Fund (2004)

    Google Scholar 

  • Craycroft, J.: Propensity score methods: a simulation and case study involving breast cancer patients. Paper 2460 (2016). https://doi.org/10.18297/etd/2460

  • Dawid, P.: Conditional independence in statistical theory. J. R. Stat. Soc. B 41, 1–31 (1979)

    Google Scholar 

  • Dawid, P.: Beware of the DAG! In: JMLR: Workshop and Conference Proceedings, vol. 6, pp. 59–86 (2009)

    Google Scholar 

  • Dowe, P.: Causal processes. In: Stanford Encyclopedia of Philosophy (2007). http://seop.illc.uva.nl/entries/causation-process/

  • Demidenko, E., Mandel, I.: Yield analysis and mixed model. In: Proceedings of Joint Statistical Meeting. ASA, Alexandria, VA (2005)

    Google Scholar 

  • Dodson, D., Mandel, I.: Causal Analytics for Media Planning (2015). https://et220.etelmar.net/index.aspx

  • Efron, B., Hastie, T.: Computer Age Statistical Inference Algorithms, Evidence, and Data Science. Cambridge University Press, New York (2016)

    Google Scholar 

  • Good, I.J.: Good Thinking: The Foundations of Probability and Its Applications. The University of Minnesota, Minneapolis (1983)

    Google Scholar 

  • Greenland, S., Robins, J.M., Pearl, J.: Confounding and collapsibility in causal inference. Stat. Sci. 14(1), 29–46 (1999)

    Article  Google Scholar 

  • Groff, R. (ed.): Revitalizing Causality: Realism about Causality in Philosophy and Social Science. Taylor and Francis Group, London (2008)

    Google Scholar 

  • Hastie,T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer (2009)

    Google Scholar 

  • Hildreth, C., Houck, J.P.: Some estimators for a linear model with random coefficients. J. Am. Stat. Assoc. 63, 584–595 (1968)

    MathSciNet  MATH  Google Scholar 

  • Hitchcock, C.: Probabilistic causation. In: Stanford Encyclopedia of Philosophy (2010). http://plato.stanford.edu/entries/causation-probabilistic/

  • Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  Google Scholar 

  • Hoover, K.D.: Causality in economics and econometrics. In: The New Palgrave Dictionary of Economics. Springer, Heidelberg (2016). https://doi.org/10.1057/978-1-349-95121-5_2227-1

    Google Scholar 

  • Illari, P., Russo, F.: Causality: Philosophical Theory meets Scientific Practice. Oxford University Press, London (2014)

    Google Scholar 

  • Imai, K., Tingley, D.: A statistical method for empirical testing of competing theories. Am. J. Polit. Sci. 56(1), 218–236 (2012)

    Article  Google Scholar 

  • Imbens, G., Rubin, D.: Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press, New York (2015)

    Google Scholar 

  • Johnson, V., Payne, R., Wang, T., Asher, A., Mandal, S.: On the reproducibility of psychological science. J. Am. Stat. Assoc. 112, 517 (2017)

    Article  MathSciNet  Google Scholar 

  • Kaplan, D., Chen, C.: Bayesian Propensity Score Analysis: Simulation and Case Study (2011). https://www.sree.org/conferences/2011/program/downloads/slides/20.pdf

  • King, G., Nielsen, R.: Why Propensity Scores Should Not Be Used for Matching (2016). https://pdfs.semanticscholar.org/8ed9/88fa9e9ed4b7569faaab920639953c881b27.pdf

  • Kistler, M.: Causation and Laws of Nature. Routledge, London (2006)

    Book  Google Scholar 

  • Kline, R.: Principles and Practice of Structural Equation Modeling. The Guilford Press, New York (2011)

    Google Scholar 

  • Kuznetsov, D., Mandel, I.: Statistical physics of media processes: mediaphysics. Phys. A 377, 253–268 (2007)

    Article  Google Scholar 

  • Leightner, J., Inoue, T.: Solving the omitted variables problem of regression analysis using the relative vertical position of observations. Adv. Decis. Sci. 2012 (2012). Paper ID 728980

    Article  MathSciNet  Google Scholar 

  • Lewis, D.: Counterfactuals. Harvard University Press, Cambridge (1973)

    Google Scholar 

  • Li, H., Yuan, Z., Su, P., Wang, T., Yu, Y., Sun, X., Xue, F.: A simulation study on matched case-control designs in the perspective of causal diagrams. BMC Med. Res. Methodol. BMC Ser. 16, 102 (2016)

    Article  Google Scholar 

  • Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl. Stochastic Models Bus. Ind. 17, 319–330 (2001)

    Article  MathSciNet  Google Scholar 

  • Lipovetsky, S., Conklin, M.: Data aggregation and Simpson_s paradox gauged by index numbers. Eur. J. Oper. Res. 172, 334–351 (2006)

    Article  Google Scholar 

  • Lipovetsky, S.: Iteratively re-weighted random-coefficient models and Shapley value regression. Model Assist. Stat. Appl. 2, 201–212 (2007)

    MathSciNet  MATH  Google Scholar 

  • Lipovetsky, S., Conklin, M.: Predictor relative importance and matching regression parameters. J. Appl. Stat. (2014)

    Google Scholar 

  • Lipovetsky, S., Mandel, I.: Review on: handbook of causal analysis in social research, Springer, 2015. Technometrics 57(2), 298–300 (2015a)

    Google Scholar 

  • Lipovetsky, S., Mandel, I.: Modeling probability of causal and random impacts. J. Mod. Appl. Stat. Methods 14(1), 180–195 (2015b)

    Article  Google Scholar 

  • Mandel, I.: Sociosystemics, statistics, decisions. Model Assist. Stat. Appl. 6, 163–217 (2011)

    Google Scholar 

  • Mandel, I.: Fusion and causal analysis in big marketing data sets. In: Proceedings of JSM. ASA, Alexandria, VA, pp. 1719–1732 (2013)

    Google Scholar 

  • Mandel, I.: Causal models in estimation of the advertising ROI. In: Proceedings of JSM. ASA, Alexandria, VA, pp. 1720–1725 (2016)

    Google Scholar 

  • Mandel, I.: Troublesome Dependency Modeling: Causality, Inference, Statistical Learning (2017a). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2984045

  • Mandel, I.: Regression coefficients vs causal coefficients. Post in ASA blog, 19 July 2017 (2017b). http://community.amstat.org

  • Masiuk, S., Kukush, A., Shklyar, S., Chepurny, M., Likhtarov, I.: Radiation Risk Estimation: Based on Measurement Error Models. Walter de Gruyter, Boston (2017)

    Google Scholar 

  • Menzies, P.: Counterfactual theories of causation. In: Stanford Encyclopedia of Philosophy (2014). http://seop.illc.uva.nl/entries/causation-counterfactual/

  • Mirkin, B.: Core Concepts in Data Analysis: Summarization, Correlation and Visualization. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-85729-287-2

    Book  MATH  Google Scholar 

  • Morgan, S.L. (ed.): Handbook of Causal Analysis in Social Research. Springer, Heidelberg (2014). https://doi.org/10.1007/978-94-007-6094-3

    Book  Google Scholar 

  • Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference: Methods and Principles for Social Research. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  • Open Science Collaboration: Investigating variation in replicability: a “Many Labs” replication project. Soc. Psychol. 45, 142–152 (2014)

    Article  Google Scholar 

  • Open Science Collaboration: Estimating the reproducibility of psychological science. Science 349(6251) (2015)

    Google Scholar 

  • Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Pearl, J.: The Causal Foundations of Structural Equation Modeling. Technical report R-370 (2012). http://ftp.cs.ucla.edu/pub/stat_ser/r370.pdf

  • Pearl, J., Glymour, M., Jewell, N.: Causal Inference in Statistics: A Primer. Wiley, Chichester (2016)

    Google Scholar 

  • Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, Cambridge (2017)

    Google Scholar 

  • Ralph, J., O’Neill, R., Winton, J.: A Practical Introduction to Index Numbers. Wiley (2015)

    Google Scholar 

  • Rubin, D.: Matched Samples for Causal Effect. Cambridge University Press, New York (2006)

    Google Scholar 

  • Scholkopf, B.: Causal Inference and Statistical Learning (2012). http://ml.dcs.shef.ac.uk/masamb/schoelkopf.pdf. http://machinelearningmastery.com/machine-learning-statistical-causal-methods/

  • Scholkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: Semi-supervised learning in causal and anticausal settings. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 129–141. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41136-6_13

    Chapter  Google Scholar 

  • Skow, B.: An Argument Against Woodward’s Theory of Causal Explanation (2013). http://web.mit.edu/bskow/www/research/manipulationism.pdf

  • Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. The MIT Press, Cambridge (2001)

    Google Scholar 

  • Squazzoni, F.: Agent-Based Computational Sociology. Wiley, Chichester (2012)

    Book  Google Scholar 

  • VanderWeele, T.: Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press, New York (2015)

    Google Scholar 

  • Vapnik, V.: Estimation of Dependences Based on Empirical Data: Empirical Inference Science. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-34239-7

    Book  MATH  Google Scholar 

  • Viswanathan, M.: Measurement Error and Research Design. SAGE Publications, Thousand Oaks (2005)

    Google Scholar 

  • Wansbeek, T., Meijer, E.: Measurement Error and Latent Variables in Econometrics. Elsevier, Amsterdam (2000)

    Google Scholar 

  • Wasserstein, R., Lazar, N.: The ASA’s statement on p-values: context, process, and purpose. Am. Stat. 70(2), 129–133 (2016)

    Article  MathSciNet  Google Scholar 

  • Zagar, A., Kadziola, Z., Lipkovich, I., Faries, D.: Evaluating different strategies for estimating treatment effects in observational studies. J. Biopharm. Stat. 27(3), 535–553 (2017)

    Article  Google Scholar 

  • Zadeh, L.: Causality is Undefinable. Toward a Theory of Hierarchical Definability (2001). http://link.springer.com/chapter/10.1007/3-540-45813-1_2#page-1

Download references

Acknowledgements

The study of causality was supported by Telmar Inc. and some of the results were incorporated in its software. Author sincerely thanks I. Lipkovich and S. Lipovetsky for the numerous fruitful discussions and B. Mirkin for very meaningful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandel, I. (2018). Causality Modeling and Statistical Generative Mechanisms. In: Rozonoer, L., Mirkin, B., Muchnik, I. (eds) Braverman Readings in Machine Learning. Key Ideas from Inception to Current State. Lecture Notes in Computer Science(), vol 11100. Springer, Cham. https://doi.org/10.1007/978-3-319-99492-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99492-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99491-8

  • Online ISBN: 978-3-319-99492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics