Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11100))

  • 1325 Accesses

Abstract

This paper contains a comprehensive survey of possible ways for potential functions design on sets of signals and symbolic sequences. Significant emphasis is placed on a generalized probabilistic approach to construction of potential functions. This approach covers both vector signals and symbolic sequences at once and leads to a large family of potential functions based on the notion of a random transformation of signals and sequences, which can underlie, in particular, probabilistic models of evolution of biomolecular sequences. We show that some specific choice of the sequence random transformation allows to obtain such important particular cases as Global Alignment Kernel and Local Alignment Kernel. The second part of the paper addresses the multi-kernel situation, which is extremely actual, in particular, due to the necessity to combine information from different sources. A generalized probabilistic featureless SVM-based approach to combining different data sources via supervised selective kernel fusion was proposed in our previous papers. In this paper we demonstrate significant qualitative advantages of the proposed approach over other methods of kernel fusion on example of membrane protein prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duin, R.P.W., De Ridder, D., Tax, D.M.J.: Experiments with a featureless approach to pattern recognition. Pattern Recogn. Lett. 18(11–13), 1159–1166 (1997)

    Article  Google Scholar 

  2. Mottl, V.V., Dvoenko, S.D., Seredin, O.S., Kulikowski, C.A., Muchnik, I.B.: Featureless pattern recognition in an imaginary hilbert space and its application to protein fold classification. In: Proceedings of the II-th International Workshop on MLDM in Pattern Recognition, 2001, pp. 322–336 (2001)

    Chapter  Google Scholar 

  3. Braverman, E.M.: Experiments on training a machine for pattern recognition. Ph.D. Thesis. Moscow (1961)

    Google Scholar 

  4. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998). 768 p

    Google Scholar 

  5. Aizerman, M.A., et al.: Potential functions method in machine learning theory (in Russian). M.: Nauka (1970). 384 p

    Google Scholar 

  6. Mercer, T.: Functions of positive and negative type and their connection with the theory of integral equations. Trans. London. Philos. Soc. A 209, 415–416 (1999)

    MATH  Google Scholar 

  7. Mottl, V.V.: Metric spaces, assuming introducing linear operations and inner products. Reports of the RAS. — 2003. 388(3):1–4 (2003). (In Russian)

    Google Scholar 

  8. Haussler, D.: Convolution kernels on discrete structures. Technical report. University of California (1999)

    Google Scholar 

  9. Cuturi, M., Vert, J.-P., Birkenes, Ø., Matsui, T.: A kernel for time series based on global alignments. In: Proceedings of ICASSP, vol. II, pp. 413–416 (2007)

    Google Scholar 

  10. Gordon, L., Chervonenkis, A., Gammerman, A., Shahmuradov, I., Solovyev, V.: Sequence alignment kernel for recognition of promoter regions. Bioinformatics 19(15), 1964–1971 (2003). https://doi.org/10.1093/bioinformatics/btg265

    Article  Google Scholar 

  11. Saigo, H., Vert, J.-P., Ueda, N., Akutsu, T.: Protein homology detection using string alignment kernels. Bioinformatics 20, 1682–1689 (2004)

    Article  Google Scholar 

  12. Rogen P., Fain B.: Automatic classification of protein structure by using Gauss integrals. Proc. Natl. Acad. Sci. USA. 200;100(1), 119–24. https://doi.org/10.1073/pnas.2636460100

    Article  Google Scholar 

  13. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970). https://doi.org/10.1016/0022-2836(70)90057-4

    Article  Google Scholar 

  15. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981). https://doi.org/10.1016/3960022-2836(81)90087-5

    Article  Google Scholar 

  16. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000). https://doi.org/10.1089/39910665270050081478

    Article  Google Scholar 

  17. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequences Analysis: Probabilistic Models of Proteins and Nucleic Acid. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  18. Sulimova, V.V., Seredin, O.S., Mottl, V.V.: Metrics on the basis of optimal alignment of biological sequences (In Russian). J. Mach. Learn. Data Min. 2(3), 286–304 (2016)

    Google Scholar 

  19. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  20. Malenichev, A., Sulimova, V., Krasotkina, O., Mottl, V., Markov, A.: An automatic matching procedure of ultrasonic railway defectograms. In: Perner, P. (ed.) MLDM 2014. LNCS (LNAI), vol. 8556, pp. 315–327. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08979-9_24

    Chapter  Google Scholar 

  21. Salvador, S., Chan, P.: Toward accurate dynamic time wrapping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Google Scholar 

  22. Al-Naymat, G., Chawla, S., Taheri, J.: SparseDTW: A Novel Approach to Speed up Dynamic Time Warping (2012)

    Google Scholar 

  23. Lei, H., Sun, B.: A study on the dynamic time warping in kernel machines. In: Proceedings of the 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 839–845 (2007)

    Google Scholar 

  24. Pekalska, E., Paclic, P., Duin, R.: A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res. 2001(2), 175–211 (2001)

    MathSciNet  Google Scholar 

  25. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In: Proceedings of the Sixth Annual International Conference on Computational Molecular Biology, pp. 225–232 (2002)

    Google Scholar 

  26. Schölkopf, B., Tsuda, K., Vert, J.-P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004). 410 p

    Google Scholar 

  27. Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS Comput. Biol. 4(10), 1–10 (2008)

    Article  Google Scholar 

  28. Mottl, V., Lange, M., Sulimova, V., Yermakov, A.: Signature verification based on fusion of on-line and off-line kernels. In: 19-th International Conference on Pattern Recognition. Florida, Tampa (2008)

    Google Scholar 

  29. Mottl, V., Seredin, O., Krasotkina, O.: Compactness hypothesis, potential functions, and rectifying linear space in machine learning. In: Key Ideas in Learning Theory from Inception to Current State: Emmanuel Braverman’s Legacy. Springer (2017)

    Google Scholar 

  30. Vert, J.-P., Saigo, H., Akutsu, T.: Local alignment kernels for biological sequences. In: Schölkopf, B., Tsuda, K., Vert, J. (eds.) Kernel Methods in Computational Biology, pp. 131–154. MIT Press (2004)

    Google Scholar 

  31. Qiu, J., Hue, M., Ben-Hur, A., Vert, J.-P., Noble, W.S.: A structural alignment kernel for protein structures. Bioinformatics 23(9), 1090–1098 (2007)

    Article  Google Scholar 

  32. Sun, L., Ji, S., Ye, J.: Adaptive diffusion kernel learning from biological networks for protein function prediction. BMC Bioinf. 9, 162 (2008)

    Article  Google Scholar 

  33. Cuturi, M., Vert, J.-P.: The context-tree kernel for strings. Neural Network (2005)

    Google Scholar 

  34. Jaakkola, T.S., Diekhans, M., Haussler, D.: Using the Fisher kernel method to detect remote protein homologies. In: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp. 149–158 (1999)

    Google Scholar 

  35. Mottl, V.V., Muchnik, I.B., Sulimova, V.V.: Kernel functions for signals and symbolic sequences of different length. In: International Conference on Pattern Recognition and Image Analysis: New Information technologies, pp. 155–158 (2007)

    Google Scholar 

  36. Dayhoff, M., Schwarts, R., Orcutt, B.: A model of evolutionary change in proteins Atlas of prot seq and structures. Nat. Biometr. Res. Found. 5(3), 345–352 (1978)

    Google Scholar 

  37. And, H.S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Nat. Acad. Sci. 1992, 10915–10919 (1992)

    Google Scholar 

  38. Sulimova, V., Mottl, V., Kulikowski, C., Muchnik, I.: Probabilistic evolutionary model for substitution matrices of PAM and BLOSUM families. DIMACS Technical Report 2008-16. DIMACS, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, New Jersey, USA (2008). 17 p., ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2008/2008-16.pdf

  39. Watkins, C.: Dynamic alignment kernels. Technical Report (1999)

    Google Scholar 

  40. Seeger, M.: Covariance kernels from bayesian generative models. Adv. Neural Inform. Process. Syst. 14, 905–912 (2002)

    Google Scholar 

  41. Miklos, I., Novak, A., Satija, R., Lyngso, R., Hein, J.: Stochastic models of sequence evolution including insertion-deletion events. Statistical Methods in Medical Research: 29 (2008)

    Google Scholar 

  42. Mottl, V.V., Muchnik, I.B., Sulimova, V.V.: Kernel functions for signals and symbolic sequences of different length. In: International Conference on Pattern Recognition and Image Analysis: New Information Technologies. Yoshkar-Ola, pp. 155–158 (2007)

    Google Scholar 

  43. Sulimova, V.V.: Potential functions for analysis of signals and symbolic sequences of different length. Tula. Ph.D. Thesis (2009). 122 p

    Google Scholar 

  44. Sulimova, V., Razin, N., Mottl, V., Muchnik, I., Kulikowski, C.: A maximum-likelihood formulation and EM algorithm for the protein multiple alignment problem. In: Dijkstra, Tjeerd M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 171–182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16001-1_15

    Chapter  Google Scholar 

  45. Lanckriet, G., et al.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)

    Article  Google Scholar 

  46. Ong, C.S., et al.: Learning the kernel with hyperkernels. J. Mach. Learn. Res. 6, 1043–1071 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Bie, T., et al.: Kernel-based data fusion for gene prioritization. Bioinformatics 23, 125–132 (2007)

    Article  Google Scholar 

  48. Bach, F.R., et al.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference on Machine Learning (ICML04). Omnipress, Banff, Canada (2004)

    Google Scholar 

  49. Sonnenburg, S., Röatsch, G., Schöafer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Hu, M., Chen, Y., Kwok, J.T.-Y.: Building sparse multiple-kernel SVM classifiers. IEEE Trans. Neural Networks 20(5), 827–839 (2009)

    Article  Google Scholar 

  51. Gönen, M., Alpayd, E.: Multiple kernel machines using localized kernels. In: Proceedings of PRIB (2009)

    Google Scholar 

  52. Gönen, M., Alpayd, E.: Localized algorithms for multiple kernel learning. Pattern Recogn. 46, 795–807 (2013)

    Article  Google Scholar 

  53. Cortes, C., Mohri, M., Rostamizadeh, A.: Learning non-linear combinations of kernels. In: Bengio, Y. et al. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 396–404 (2009)

    Google Scholar 

  54. Mottl, V., Tatarchuk, A., Sulimova, V., Krasotkina, O., Seredin, O.: Combining pattern recognition modalities at the sensor level via kernel fusion. In: Proceedings of the IW on MCS (2007)

    Google Scholar 

  55. Kloft, M., Brefeld, U., Sonnenburg, S., et al.: Efficient and accurate lp-norm multiple kernel learning. In: Bengio, Y., et al. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 997–1005. MIT Press (2009)

    Google Scholar 

  56. Tatarchuk, A., Mottl, V., Eliseyev, A., Windridge, D.: Selectivity supervision in combining pattern-recognition modalities by feature- and kernel-selective Support Vector Machines. In: Proceedings of the ICPR (2008)

    Google Scholar 

  57. Tatarchuk, A., Sulimova, V., Windridge, D., Mottl, V., Lange, M.: Supervised selective combining pattern recognition modalities and its application to signature verification by fusing on-line and off-line kernels. In: Proceedings of the IW on MCS (2009)

    Google Scholar 

  58. Tatarchuk, A., Urlov, E., Mottl, V., Windridge, D.: A support kernel machine for supervised selective combining of diverse pattern-recognition modalities. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS (2010)

    Chapter  Google Scholar 

  59. Bradley P., Mangasarian O.: Feature selection via concave minimization and support vector machines. In: International Conference on Machine Learning (1998)

    Google Scholar 

  60. Wang, L., Zhu, J., Zou, H.: The doubly regularized support vector machine. Stat. Sinica 16, 589–615 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Alberts, B., Bray, D., Lewis, J., et al.: Molecular Biology of the Cell, 3rd edn, p. 1361. Garland Publishing, New York and London (1994)

    Google Scholar 

  62. Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nat. Rev. Drug. Discov. 5(12), 993–996 (2006)

    Article  Google Scholar 

  63. Voevodin, V.V., Zhumatiy, S.A., Sobolev, S.I., Antonov, A.S., Bryzgalov, P.A., Nikitenko, D.A., Stefanov, K.S., Voevodin, V.V.: Practice of ‘Lomonosov’ supercomputer. Open Syst. 7, 36–39 (2012). Moscow: “Open Systems” Publishing house, (in Russian)

    Google Scholar 

  64. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.L.: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  Google Scholar 

  65. Chen, C.P., Rost, B.: State-of-the-art in membrane protein prediction. Appl. Bioinf. 1, 2135 (2002)

    Google Scholar 

  66. Gao, F.P., Cross, T.A.: Recent developments in membrane-protein structural genomics. Genome Biol. 6, 244 (2005)

    Article  Google Scholar 

  67. Lanckriet, G., et al.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)

    Article  Google Scholar 

  68. Mewes, H.W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

The results of the research project are published with the financial support of Tula State University within the framework of the scientific project № 2017-63PUBL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Sulimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sulimova, V., Mottl, V. (2018). Potential Functions for Signals and Symbolic Sequences. In: Rozonoer, L., Mirkin, B., Muchnik, I. (eds) Braverman Readings in Machine Learning. Key Ideas from Inception to Current State. Lecture Notes in Computer Science(), vol 11100. Springer, Cham. https://doi.org/10.1007/978-3-319-99492-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99492-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99491-8

  • Online ISBN: 978-3-319-99492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics