Advertisement

Potential Functions for Signals and Symbolic Sequences

  • Valentina SulimovaEmail author
  • Vadim Mottl
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11100)

Abstract

This paper contains a comprehensive survey of possible ways for potential functions design on sets of signals and symbolic sequences. Significant emphasis is placed on a generalized probabilistic approach to construction of potential functions. This approach covers both vector signals and symbolic sequences at once and leads to a large family of potential functions based on the notion of a random transformation of signals and sequences, which can underlie, in particular, probabilistic models of evolution of biomolecular sequences. We show that some specific choice of the sequence random transformation allows to obtain such important particular cases as Global Alignment Kernel and Local Alignment Kernel. The second part of the paper addresses the multi-kernel situation, which is extremely actual, in particular, due to the necessity to combine information from different sources. A generalized probabilistic featureless SVM-based approach to combining different data sources via supervised selective kernel fusion was proposed in our previous papers. In this paper we demonstrate significant qualitative advantages of the proposed approach over other methods of kernel fusion on example of membrane protein prediction.

Keywords

Potential (Kernel) functions Featureless approach Probabilistic models Sequence alignment SVM Multi-kernel learning Membrane protein prediction 

Notes

Acknowledgements

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

The results of the research project are published with the financial support of Tula State University within the framework of the scientific project № 2017-63PUBL.

References

  1. 1.
    Duin, R.P.W., De Ridder, D., Tax, D.M.J.: Experiments with a featureless approach to pattern recognition. Pattern Recogn. Lett. 18(11–13), 1159–1166 (1997)CrossRefGoogle Scholar
  2. 2.
    Mottl, V.V., Dvoenko, S.D., Seredin, O.S., Kulikowski, C.A., Muchnik, I.B.: Featureless pattern recognition in an imaginary hilbert space and its application to protein fold classification. In: Proceedings of the II-th International Workshop on MLDM in Pattern Recognition, 2001, pp. 322–336 (2001)CrossRefGoogle Scholar
  3. 3.
    Braverman, E.M.: Experiments on training a machine for pattern recognition. Ph.D. Thesis. Moscow (1961)Google Scholar
  4. 4.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998). 768 pGoogle Scholar
  5. 5.
    Aizerman, M.A., et al.: Potential functions method in machine learning theory (in Russian). M.: Nauka (1970). 384 pGoogle Scholar
  6. 6.
    Mercer, T.: Functions of positive and negative type and their connection with the theory of integral equations. Trans. London. Philos. Soc. A 209, 415–416 (1999)zbMATHGoogle Scholar
  7. 7.
    Mottl, V.V.: Metric spaces, assuming introducing linear operations and inner products. Reports of the RAS. — 2003. 388(3):1–4 (2003). (In Russian)Google Scholar
  8. 8.
    Haussler, D.: Convolution kernels on discrete structures. Technical report. University of California (1999)Google Scholar
  9. 9.
    Cuturi, M., Vert, J.-P., Birkenes, Ø., Matsui, T.: A kernel for time series based on global alignments. In: Proceedings of ICASSP, vol. II, pp. 413–416 (2007)Google Scholar
  10. 10.
    Gordon, L., Chervonenkis, A., Gammerman, A., Shahmuradov, I., Solovyev, V.: Sequence alignment kernel for recognition of promoter regions. Bioinformatics 19(15), 1964–1971 (2003).  https://doi.org/10.1093/bioinformatics/btg265CrossRefGoogle Scholar
  11. 11.
    Saigo, H., Vert, J.-P., Ueda, N., Akutsu, T.: Protein homology detection using string alignment kernels. Bioinformatics 20, 1682–1689 (2004)CrossRefGoogle Scholar
  12. 12.
    Rogen P., Fain B.: Automatic classification of protein structure by using Gauss integrals. Proc. Natl. Acad. Sci. USA. 200;100(1), 119–24.  https://doi.org/10.1073/pnas.2636460100 CrossRefGoogle Scholar
  13. 13.
    Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970).  https://doi.org/10.1016/0022-2836(70)90057-4CrossRefGoogle Scholar
  15. 15.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981).  https://doi.org/10.1016/3960022-2836(81)90087-5CrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).  https://doi.org/10.1089/39910665270050081478CrossRefGoogle Scholar
  17. 17.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequences Analysis: Probabilistic Models of Proteins and Nucleic Acid. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  18. 18.
    Sulimova, V.V., Seredin, O.S., Mottl, V.V.: Metrics on the basis of optimal alignment of biological sequences (In Russian). J. Mach. Learn. Data Min. 2(3), 286–304 (2016)Google Scholar
  19. 19.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)CrossRefGoogle Scholar
  20. 20.
    Malenichev, A., Sulimova, V., Krasotkina, O., Mottl, V., Markov, A.: An automatic matching procedure of ultrasonic railway defectograms. In: Perner, P. (ed.) MLDM 2014. LNCS (LNAI), vol. 8556, pp. 315–327. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08979-9_24CrossRefGoogle Scholar
  21. 21.
    Salvador, S., Chan, P.: Toward accurate dynamic time wrapping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)Google Scholar
  22. 22.
    Al-Naymat, G., Chawla, S., Taheri, J.: SparseDTW: A Novel Approach to Speed up Dynamic Time Warping (2012)Google Scholar
  23. 23.
    Lei, H., Sun, B.: A study on the dynamic time warping in kernel machines. In: Proceedings of the 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 839–845 (2007)Google Scholar
  24. 24.
    Pekalska, E., Paclic, P., Duin, R.: A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res. 2001(2), 175–211 (2001)MathSciNetGoogle Scholar
  25. 25.
    Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In: Proceedings of the Sixth Annual International Conference on Computational Molecular Biology, pp. 225–232 (2002)Google Scholar
  26. 26.
    Schölkopf, B., Tsuda, K., Vert, J.-P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004). 410 pGoogle Scholar
  27. 27.
    Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS Comput. Biol. 4(10), 1–10 (2008)CrossRefGoogle Scholar
  28. 28.
    Mottl, V., Lange, M., Sulimova, V., Yermakov, A.: Signature verification based on fusion of on-line and off-line kernels. In: 19-th International Conference on Pattern Recognition. Florida, Tampa (2008)Google Scholar
  29. 29.
    Mottl, V., Seredin, O., Krasotkina, O.: Compactness hypothesis, potential functions, and rectifying linear space in machine learning. In: Key Ideas in Learning Theory from Inception to Current State: Emmanuel Braverman’s Legacy. Springer (2017)Google Scholar
  30. 30.
    Vert, J.-P., Saigo, H., Akutsu, T.: Local alignment kernels for biological sequences. In: Schölkopf, B., Tsuda, K., Vert, J. (eds.) Kernel Methods in Computational Biology, pp. 131–154. MIT Press (2004)Google Scholar
  31. 31.
    Qiu, J., Hue, M., Ben-Hur, A., Vert, J.-P., Noble, W.S.: A structural alignment kernel for protein structures. Bioinformatics 23(9), 1090–1098 (2007)CrossRefGoogle Scholar
  32. 32.
    Sun, L., Ji, S., Ye, J.: Adaptive diffusion kernel learning from biological networks for protein function prediction. BMC Bioinf. 9, 162 (2008)CrossRefGoogle Scholar
  33. 33.
    Cuturi, M., Vert, J.-P.: The context-tree kernel for strings. Neural Network (2005)Google Scholar
  34. 34.
    Jaakkola, T.S., Diekhans, M., Haussler, D.: Using the Fisher kernel method to detect remote protein homologies. In: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp. 149–158 (1999)Google Scholar
  35. 35.
    Mottl, V.V., Muchnik, I.B., Sulimova, V.V.: Kernel functions for signals and symbolic sequences of different length. In: International Conference on Pattern Recognition and Image Analysis: New Information technologies, pp. 155–158 (2007)Google Scholar
  36. 36.
    Dayhoff, M., Schwarts, R., Orcutt, B.: A model of evolutionary change in proteins Atlas of prot seq and structures. Nat. Biometr. Res. Found. 5(3), 345–352 (1978)Google Scholar
  37. 37.
    And, H.S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Nat. Acad. Sci. 1992, 10915–10919 (1992)Google Scholar
  38. 38.
    Sulimova, V., Mottl, V., Kulikowski, C., Muchnik, I.: Probabilistic evolutionary model for substitution matrices of PAM and BLOSUM families. DIMACS Technical Report 2008-16. DIMACS, Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, New Jersey, USA (2008). 17 p., ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2008/2008-16.pdf
  39. 39.
    Watkins, C.: Dynamic alignment kernels. Technical Report (1999)Google Scholar
  40. 40.
    Seeger, M.: Covariance kernels from bayesian generative models. Adv. Neural Inform. Process. Syst. 14, 905–912 (2002)Google Scholar
  41. 41.
    Miklos, I., Novak, A., Satija, R., Lyngso, R., Hein, J.: Stochastic models of sequence evolution including insertion-deletion events. Statistical Methods in Medical Research: 29 (2008)Google Scholar
  42. 42.
    Mottl, V.V., Muchnik, I.B., Sulimova, V.V.: Kernel functions for signals and symbolic sequences of different length. In: International Conference on Pattern Recognition and Image Analysis: New Information Technologies. Yoshkar-Ola, pp. 155–158 (2007)Google Scholar
  43. 43.
    Sulimova, V.V.: Potential functions for analysis of signals and symbolic sequences of different length. Tula. Ph.D. Thesis (2009). 122 pGoogle Scholar
  44. 44.
    Sulimova, V., Razin, N., Mottl, V., Muchnik, I., Kulikowski, C.: A maximum-likelihood formulation and EM algorithm for the protein multiple alignment problem. In: Dijkstra, Tjeerd M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 171–182. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16001-1_15CrossRefGoogle Scholar
  45. 45.
    Lanckriet, G., et al.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)CrossRefGoogle Scholar
  46. 46.
    Ong, C.S., et al.: Learning the kernel with hyperkernels. J. Mach. Learn. Res. 6, 1043–1071 (2005)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Bie, T., et al.: Kernel-based data fusion for gene prioritization. Bioinformatics 23, 125–132 (2007)CrossRefGoogle Scholar
  48. 48.
    Bach, F.R., et al.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference on Machine Learning (ICML04). Omnipress, Banff, Canada (2004)Google Scholar
  49. 49.
    Sonnenburg, S., Röatsch, G., Schöafer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Hu, M., Chen, Y., Kwok, J.T.-Y.: Building sparse multiple-kernel SVM classifiers. IEEE Trans. Neural Networks 20(5), 827–839 (2009)CrossRefGoogle Scholar
  51. 51.
    Gönen, M., Alpayd, E.: Multiple kernel machines using localized kernels. In: Proceedings of PRIB (2009)Google Scholar
  52. 52.
    Gönen, M., Alpayd, E.: Localized algorithms for multiple kernel learning. Pattern Recogn. 46, 795–807 (2013)CrossRefGoogle Scholar
  53. 53.
    Cortes, C., Mohri, M., Rostamizadeh, A.: Learning non-linear combinations of kernels. In: Bengio, Y. et al. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 396–404 (2009)Google Scholar
  54. 54.
    Mottl, V., Tatarchuk, A., Sulimova, V., Krasotkina, O., Seredin, O.: Combining pattern recognition modalities at the sensor level via kernel fusion. In: Proceedings of the IW on MCS (2007)Google Scholar
  55. 55.
    Kloft, M., Brefeld, U., Sonnenburg, S., et al.: Efficient and accurate lp-norm multiple kernel learning. In: Bengio, Y., et al. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 997–1005. MIT Press (2009)Google Scholar
  56. 56.
    Tatarchuk, A., Mottl, V., Eliseyev, A., Windridge, D.: Selectivity supervision in combining pattern-recognition modalities by feature- and kernel-selective Support Vector Machines. In: Proceedings of the ICPR (2008)Google Scholar
  57. 57.
    Tatarchuk, A., Sulimova, V., Windridge, D., Mottl, V., Lange, M.: Supervised selective combining pattern recognition modalities and its application to signature verification by fusing on-line and off-line kernels. In: Proceedings of the IW on MCS (2009)Google Scholar
  58. 58.
    Tatarchuk, A., Urlov, E., Mottl, V., Windridge, D.: A support kernel machine for supervised selective combining of diverse pattern-recognition modalities. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS (2010)CrossRefGoogle Scholar
  59. 59.
    Bradley P., Mangasarian O.: Feature selection via concave minimization and support vector machines. In: International Conference on Machine Learning (1998)Google Scholar
  60. 60.
    Wang, L., Zhu, J., Zou, H.: The doubly regularized support vector machine. Stat. Sinica 16, 589–615 (2006)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Alberts, B., Bray, D., Lewis, J., et al.: Molecular Biology of the Cell, 3rd edn, p. 1361. Garland Publishing, New York and London (1994)Google Scholar
  62. 62.
    Overington, J.P., Al-Lazikani, B., Hopkins, A.L.: How many drug targets are there? Nat. Rev. Drug. Discov. 5(12), 993–996 (2006)CrossRefGoogle Scholar
  63. 63.
    Voevodin, V.V., Zhumatiy, S.A., Sobolev, S.I., Antonov, A.S., Bryzgalov, P.A., Nikitenko, D.A., Stefanov, K.S., Voevodin, V.V.: Practice of ‘Lomonosov’ supercomputer. Open Syst. 7, 36–39 (2012). Moscow: “Open Systems” Publishing house, (in Russian)Google Scholar
  64. 64.
    Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.L.: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)CrossRefGoogle Scholar
  65. 65.
    Chen, C.P., Rost, B.: State-of-the-art in membrane protein prediction. Appl. Bioinf. 1, 2135 (2002)Google Scholar
  66. 66.
    Gao, F.P., Cross, T.A.: Recent developments in membrane-protein structural genomics. Genome Biol. 6, 244 (2005)CrossRefGoogle Scholar
  67. 67.
    Lanckriet, G., et al.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)CrossRefGoogle Scholar
  68. 68.
    Mewes, H.W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Tula State UniversityTulaRussia
  2. 2.Computing Center of the Russian Academy of SciencesMoscowRussia

Personalised recommendations