• John GuaschiEmail author
  • Daniel Juan-Pineda
  • Silvia Millán López
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


Given a group G, the \(K\)-theoretic fibred isomorphism conjecture of F. T. Farrell and L. E. Jones asserts that the algebraic \(K\)-theory of its integral group ring \(\mathbb Z[G]\) may be computed from the knowledge of the algebraic \(K\)-theory groups of its virtually cyclic subgroups (see or Appendix A for the statement).


Jones Asserts Integral Group Ring Dicyclic Group Binary Polyhedral Groups Pure Braid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.T. Farrell, L.E. Jones, Isomorphism conjectures in algebraic \(K\)-theory. J. Amer. Math. Soc. 6, 249–297 (1993)MathSciNetzbMATHGoogle Scholar
  2. 2.
    E. Berkove, D. Juan-Pineda, K. Pearson, A geometric approach to the lower algebraic \(K\)-theory of Fuchsian groups. Topol. Appl. 119, 269–277 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Berkove, F.T. Farrell, D. Juan-Pineda, K. Pearson, The Farrell-Jones isomorphism conjecture for finite covolume hyperbolic actions and the algebraic \(K\)-theory of Bianchi groups. Trans. Amer. Math. Soc. 352, 5689–5702 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C.S. Aravinda, F.T. Farrell, S.K. Roushon, Algebraic \(K\)-theory of pure braid groups. Asian J. Math. 4, 337–343 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F.T. Farrell, S.K. Roushon, The Whitehead groups of braid groups vanish. Int. Math. Res. Not. 10, 515–526 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Berkove, D. Juan-Pineda, Q. Lu, Algebraic \(K\)-theory of mapping class groups, \(K\)-Theory 32, 83–100 (2004)Google Scholar
  7. 7.
    J.-F. Lafont, I.J. Ortiz, Lower algebraic \(K\)-theory of hyperbolic \(3\)-simplex reflection groups comment. Math. Helv. 84, 297–337 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J.-F. Lafont, B.A. Magurn, I.J. Ortiz, Lower algebraic \(K\)-theory of certain reflection groups, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 148 (2010), pp. 193–226Google Scholar
  9. 9.
    D. Juan-Pineda, J.-F. Lafont, S. Millán-Vossler, S. Pallekonda, Algebraic \(K\)-theory of virtually free groups. Proc. R. Soc. Edinb. 141A, 1–22 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    J.S. Birman, Braids, links and mapping class groups. Annals of Mathematics Studies, vol. 82, (Princeton University Press, 1974)Google Scholar
  11. 11.
    V.L. Hansen, Braids and coverings. Selected topics, London Mathematics of Society Student Texts  vol. 18, (Cambridge University Press, 1989)Google Scholar
  12. 12.
    E. Fadell, J. Van Buskirk, The braid groups of \(\mathbb{E}^2\) and \(\mathbb{S}^2\). Duke Math. J. 29, 243–257 (1962)MathSciNetCrossRefGoogle Scholar
  13. 13.
    O. Zariski, On the Poincaré group of rational plane curves. Am. J. Math. 58, 607–619 (1936)CrossRefGoogle Scholar
  14. 14.
    J. Van Buskirk, Braid groups of compact \(2\)-manifolds with elements of finite order. Trans. Am. Math. Soc. 122, 81–97 (1966)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Juan-Pineda, S. Millán-López, The Whitehead group and the lower algebraic \(K\)-theory of braid groups on \(\mathbb{S}^2\) and \(\mathbb{R}P^2\). Algebr. Geom. Topol. 10, 1887–1903 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    D.L. Gonçalves, J. Guaschi, Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane. J. Group Theory 13, 277–294 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    R. Gillette, J. Van Buskirk, The word problem and consequences for the braid groups and mapping class groups of the \(2\)-sphere. Trans. Am. Math. Soc. 131, 277–296 (1968)MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Murasugi, Seifert fibre spaces and braid groups. Proc. London Math. Soc. 44, 71–84 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    D.L. Gonçalves, J. Guaschi, The classification and the conjugacy classes of the finite subgroups of the sphere braid groups. Algebr. Geom. Topol. 8, 757–785 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D.B.A. Epstein, Ends, in Topology of \(3\)-manifolds and related topics (Proc. Univ. of Georgia Institute, 110–117, Prentice-Hall, Englewood Cliffs, N.J., 1961), p. 1962Google Scholar
  21. 21.
    D. Juan-Pineda, I. Leary, On classifying spaces for the family of virtually cyclic subgroups, in Recent developments in algebraic topology. Contemp. Math. 407, 135–145 (2001)CrossRefGoogle Scholar
  22. 22.
    C.T.C. Wall, Poincaré complexes I. Ann. Math. 86, 213–245 (1967)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D.L. Gonçalves, J. Guaschi, The Virtually Cyclic Subgroups of the Braid Groups of the Sphere. Springer Briefs in Mathematics (Springer, 2013)Google Scholar
  24. 24.
    T. Yamada, On the group algebras of metacyclic groups over algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. I. 15, 179–199 (1968)Google Scholar
  25. 25.
    T. Yamada, On the group algebras of metabelian groups over algebraic number fields I. Osaka J. Math. 6, 211–228 (1969)MathSciNetzbMATHGoogle Scholar
  26. 26.
    R.G. Swan, Projective modules over binary polyhedral groups. J. Reine Angew. Math. 342, 66–172 (1983)MathSciNetzbMATHGoogle Scholar
  27. 27.
    D.L. Gonçalves, J. Guaschi, The lower central and derived series of the braid groups of the sphere. Trans. Am. Math. Soc. 361, 3375–3399 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    O. Broche Cristo, A. Konovalov, A. Olivieri, G. Olteanu, Á. del Río, Wedderga—Wedderburn Decomposition of Group Algebras, GAP package, Version 4.3.3, 2009,

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG, part of Springer Nature 2018

Authors and Affiliations

  • John Guaschi
    • 1
    Email author
  • Daniel Juan-Pineda
    • 2
  • Silvia Millán López
    • 3
  1. 1.Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139Université de Caen Normandie, Normandie UniversitéCaenFrance
  2. 2.Centro de Ciencias MatemáticasUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Colegio de Bachilleres del Estado de TlaxcalaTlaxcalaMexico

Personalised recommendations