Advertisement

Introduction

  • Massimiliano Berti
  • Jean-Marc Delort
Chapter
  • 234 Downloads
Part of the Lecture Notes of the Unione Matematica Italiana book series (UMILN, volume 24)

Abstract

The capillary-gravity water waves equations describe the motion of the interface between an incompressible irrotational fluid in a gravity field and air, in the presence of surface tension. In the case of the one dimensional problem with finite depth, corresponding to a two-dimensional fluid, the velocity of the fluid is given by the gradient of an harmonic potential

References

  1. 1.
    Alazard, T., Baldi, P.: Gravity capillary standing water waves. Arch. Ration. Mech. Anal. 217(3), 741–830 (2015). https://doi.org/10.1007/s00205-015-0842-5 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4) 48(5), 1149–1238 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alazard, T., Delort, J.-M.: Sobolev estimates for two dimensional gravity water waves. Astérisque 374, viii+241 (2015)Google Scholar
  4. 4.
    Alazard, T., Métivier, G.: Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ. 34(10–12), 1632–1704 (2009). https://doi.org/10.1080/03605300903296736 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011). https://doi.org/10.1215/00127094-1345653 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014). https://doi.org/10.1007/s00222-014-0498-z MathSciNetCrossRefGoogle Scholar
  7. 7.
    Alazard, T., Burq, N., Zuily, C.: Cauchy theory for the gravity water waves system with non-localized initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(2), 337–395 (2016). https://doi.org/10.1016/j.anihpc.2014.10.004 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Alinhac, S.: Paracomposition et opérateurs paradifférentiels. Commun. Partial Differ. Equ. 11(1), 87–121 (1986). https://doi.org/10.1080/03605308608820419 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Equ. 14(2), 173–230 (1989). https://doi.org/10.1080/03605308908820595 CrossRefGoogle Scholar
  10. 10.
    Ambrose, D.M.: Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35(1), 211–244 (2003). https://doi.org/10.1137/S0036141002403869 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005).  https://doi.org/10.1002/cpa.20085 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Arnold, V.I.: Reversible systems. In: Nonlinear and Turbulent Processes in Physics, vol. 3 (Kiev, 1983), pp. 1161–1174. Harwood Academic, Chur (1984)Google Scholar
  13. 13.
    Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Inv. Math. (2018). https://doi.org/10.1007/s00222-018-0812-2 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006). https://doi.org/10.1215/S0012-7094-06-13534-2 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bambusi, D., Delort, J.-M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60(11), 1665–1690 (2007).  https://doi.org/10.1002/cpa.20181 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Berti, M., Montalto, R.: Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Am. Math. Soc., Memo 891 (to appear)Google Scholar
  17. 17.
    Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212(3), 905–955 (2014). https://doi.org/10.1007/s00205-014-0726-0 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Beyer, K., Günther, M.: On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci. 21(12), 1149–1183 (1998). https://doi.org/10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO;2-C MathSciNetCrossRefGoogle Scholar
  19. 19.
    Boutet de Monvel, L.B.: Comportement d’un opérateur pseudo-différentiel sur une variété à bord. I. La propriété de transmission. J. Anal. Math. 17, 241–253 (1966)MathSciNetCrossRefGoogle Scholar
  20. 21.
    Boutet de Monvel, L.B.: Boundary problems for pseudo-differential operators. Acta Math. 126(1–2), 11–51 (1971)MathSciNetCrossRefGoogle Scholar
  21. 22.
    Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems. Lecture Notes in Mathematics, vol. 1645. Springer, Berlin (1996). Order amidst chaosGoogle Scholar
  22. 23.
    Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007). https://doi.org/10.1090/S0894-0347-07-00556-5 MathSciNetCrossRefGoogle Scholar
  23. 24.
    Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985). https://doi.org/10.1080/03605308508820396 MathSciNetCrossRefGoogle Scholar
  24. 25.
    Craig, W., Nicholls, D.P.: Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32(2), 323–359 (2000). https://doi.org/10.1137/S0036141099354181 MathSciNetCrossRefGoogle Scholar
  25. 26.
    Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83 (1993).  https://doi.org/10.1006/jcph.1993.1164 MathSciNetCrossRefGoogle Scholar
  26. 27.
    Craig, W., Sulem, C.: Normal form transformations for capillary-gravity water waves. In: Hamiltonian Partial Differential Equations and Applications. Fields Institute Communications, vol. 75, pp. 73–110. Fields Institute for Research in Mathematical Sciences, Toronto (2015). https://doi.org/10.1007/978-1-4939-2950-4_3 CrossRefGoogle Scholar
  27. 28.
    Craig, W., Worfolk, P.A.: An integrable normal form for water waves in infinite depth. Physica D 84(3–4), 513–531 (1995). https://doi.org/10.1016/0167-2789(95)00067-E MathSciNetCrossRefGoogle Scholar
  28. 29.
    Delort, J.-M.: A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on \(\mathbb {S}^1\). Astérisque 341, vi+113 (2012)Google Scholar
  29. 30.
    Delort, J.-M.: Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Am. Math. Soc. 234(1103), vi+80 (2015).  https://doi.org/10.1090/memo/1103 MathSciNetCrossRefGoogle Scholar
  30. 31.
    Delort, J.-M., Szeftel, J.: Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres. Int. Math. Res. Not. 37, 1897–1966 (2004). https://doi.org/10.1155/S1073792804133321 MathSciNetCrossRefGoogle Scholar
  31. 32.
    Deng, Y., Ionescu, A.D., Pausader, B., Pusateri, F.: Global solutions of the gravity-capillary water-wave system in three dimensions. Acta Math. 219(2), 213–402 (2017).  https://doi.org/10.4310/ACTA.2017.v219.n2.a1 MathSciNetCrossRefGoogle Scholar
  32. 34.
    Dyachenko, A.I., Zakharov, V.E.: Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190(2), 144–148 (1994). https://doi.org/10.1016/0375-9601(94)90067-1 MathSciNetCrossRefGoogle Scholar
  33. 35.
    Fang, D., Han, Z., Zhang, Q.: Almost global existence for the semi-linear Klein-Gordon equation on the circle. J. Differ. Equ. 262(9), 4610–4634 (2017). https://doi.org/10.1016/j.jde.2016.12.013 MathSciNetCrossRefGoogle Scholar
  34. 36.
    Faou, E., Grébert, B.: Quasi-invariant modified Sobolev norms for semi linear reversible PDEs. Nonlinearity 23(2), 429–443 (2010). https://doi.org/10.1088/0951-7715/23/2/011 MathSciNetCrossRefGoogle Scholar
  35. 37.
    Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175(2), 691–754 (2012).  https://doi.org/10.4007/annals.2012.175.2.6 MathSciNetCrossRefGoogle Scholar
  36. 38.
    Germain, P., Masmoudi, N., Shatah, J.: Global existence for capillary water waves. Commun. Pure Appl. Math. 68(4), 625–687 (2015).  https://doi.org/10.1002/cpa.21535 MathSciNetCrossRefGoogle Scholar
  37. 39.
    Giorgilli, A.: Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point. Ann. Inst. H. Poincaré Phys. Théor. 48(4), 423–439 (1988). http://www.numdam.org/item?id=AIHPB_1988__48_4_423_0 MathSciNetzbMATHGoogle Scholar
  38. 40.
    Giorgilli, A., Posilicano, A.: Estimates for normal forms of differential equations near an equilibrium point. Z. Angew. Math. Phys. 39(5), 713–732 (1988). https://doi.org/10.1007/BF00948732 MathSciNetCrossRefGoogle Scholar
  39. 41.
    Harrop-Griffiths, B., Ifrim, M., Tataru, D.: Finite depth gravity water waves in holomorphic coordinates. Ann. PDE 3(1), Art. 4, 102 (2017). https://doi.org/10.1007/s40818-017-0022-z
  40. 42.
    Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016). https://doi.org/10.1007/s00220-016-2708-6 MathSciNetCrossRefGoogle Scholar
  41. 43.
    Ifrim, M., Tataru, D.: Two dimensional gravity water waves with constant vorticity: I. Cubic lifespan. Preprint (2014). https://arxiv.org/abs/1510.07732
  42. 44.
    Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: Global solutions. Bull. Soc. Math. Fr. 144(2), 369–394 (2016)MathSciNetCrossRefGoogle Scholar
  43. 45.
    Ifrim, M., Tataru, D.: The lifespan of small data solutions in two dimensional capillary water waves. Arch. Ration. Mech. Anal. 225(3), 1279–1346 (2017). https://doi.org/10.1007/s00205-017-1126-z MathSciNetCrossRefGoogle Scholar
  44. 46.
    Ionescu, A.D., Pusateri, F.: Global regularity for 2D water waves with surface tension. Preprint (2014). https://arxiv.org/abs/1408.4428
  45. 47.
    Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2D. Invent. Math. 199(3), 653–804 (2015). https://doi.org/10.1007/s00222-014-0521-4 MathSciNetCrossRefGoogle Scholar
  46. 48.
    Ionescu, A.D., Pusateri, F.: Long-time existence for multi-dimensional periodic water waves. Preprint (2018). https://arxiv.org/abs/1807.02932
  47. 49.
    Iooss, G., Plotnikov, P.: Existence of multimodal standing gravity waves. J. Math. Fluid Mech. 7(suppl. 3), S349–S364 (2005). https://doi.org/10.1007/s00021-005-0164-8 MathSciNetCrossRefGoogle Scholar
  48. 50.
    Iooss, G., Plotnikov, P.: Multimodal standing gravity waves: a completely resonant system. J. Math. Fluid Mech. 7(suppl. 1), S110–S126 (2005). https://doi.org/10.1007/s00021-004-0128-4 MathSciNetCrossRefGoogle Scholar
  49. 51.
    Iooss, G., Plotnikov, P.I.: Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Am. Math. Soc. 200(940), viii+128 (2009).  https://doi.org/10.1090/memo/0940 MathSciNetCrossRefGoogle Scholar
  50. 52.
    Iooss, G., Plotnikov, P.: Asymmetrical three-dimensional travelling gravity waves. Arch. Ration. Mech. Anal. 200(3), 789–880 (2011). https://doi.org/10.1007/s00205-010-0372-0 MathSciNetCrossRefGoogle Scholar
  51. 53.
    Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 177(3), 367–478 (2005). https://doi.org/10.1007/s00205-005-0381-6 MathSciNetCrossRefGoogle Scholar
  52. 54.
    Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (electronic) (2005). https://doi.org/10.1090/S0894-0347-05-00484-4 MathSciNetCrossRefGoogle Scholar
  53. 55.
    Lannes, D.: The Water Waves Problem. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence, RI (2013).  https://doi.org/10.1090/surv/188. Mathematical analysis and asymptotics
  54. 56.
    Levi-Civita, T.: Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93(1), 264–314 (1925). https://doi.org/10.1007/BF01449965 MathSciNetCrossRefGoogle Scholar
  55. 57.
    Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005).  https://doi.org/10.4007/annals.2005.162.109 MathSciNetCrossRefGoogle Scholar
  56. 58.
    Ming, M., Zhang, Z.: Well-posedness of the water-wave problem with surface tension. J. Math. Pures Appl. (9) 92(5), 429–455 (2009). https://doi.org/10.1016/j.matpur.2009.05.005 MathSciNetCrossRefGoogle Scholar
  57. 59.
    Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)MathSciNetCrossRefGoogle Scholar
  58. 60.
    Nalimov, V.I.: The Cauchy-Poisson problem. Dinamika Splošn. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami), 104–210, 254 (1974)Google Scholar
  59. 61.
    Plotnikov, P.I., Toland, J.F.: Nash-Moser theory for standing water waves. Arch. Ration. Mech. Anal. 159(1), 1–83 (2001). https://doi.org/10.1007/PL00004246 MathSciNetCrossRefGoogle Scholar
  60. 62.
    Schweizer, B.: On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 753–781 (2005). https://doi.org/10.1016/j.anihpc.2004.11.001 MathSciNetCrossRefGoogle Scholar
  61. 63.
    Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997). https://doi.org/10.1007/s002220050177 MathSciNetCrossRefGoogle Scholar
  62. 64.
    Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999). https://doi.org/10.1090/S0894-0347-99-00290-8 MathSciNetCrossRefGoogle Scholar
  63. 65.
    Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009). https://doi.org/10.1007/s00222-009-0176-8 MathSciNetCrossRefGoogle Scholar
  64. 66.
    Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011). https://doi.org/10.1007/s00222-010-0288-1 MathSciNetCrossRefGoogle Scholar
  65. 67.
    Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982).  https://doi.org/10.2977/prims/1195184016 MathSciNetCrossRefGoogle Scholar
  66. 68.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)CrossRefGoogle Scholar
  67. 69.
    Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24(4), 1189–1228 (2011). https://doi.org/10.1088/0951-7715/24/4/010 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Massimiliano Berti
    • 1
  • Jean-Marc Delort
    • 2
  1. 1.Department of MathematicsInternational School for Advanced Studies SISSATriesteItaly
  2. 2.LAGASorbonne Paris-Cité/University Paris 13VilletaneuseFrance

Personalised recommendations