Advertisement

Further Examples and Open Problems

  • Andrea Loi
  • Michela Zedda
Chapter
  • 219 Downloads
Part of the Lecture Notes of the Unione Matematica Italiana book series (UMILN, volume 23)

Abstract

In this chapter we describe three Kähler manifolds with interesting properties. The first section summarizes the results in Loi and Zedda (J Geom Phys 110:269–276, 2016) showing that the complex plane \(\mathbb {C}\) endowed with the Cigar metric does not admit a local Kähler immersion into any complex space form even when the metric is rescaled by a positive constant. The importance of this example relies on the fact that there are not topological and geometrical obstructions for the existence of such an immersion. In the second section we describe a complete and not locally homogeneous metric introduced by Calabi (A construction of nonhomogeneous Einstein metrics. In: Proceedings of symposia in pure mathematics, vol 27, 1975). The diastasis function associated to this metric is not explicitly given and it makes very difficult to say something about the existence of a Kähler immersion into complex space forms . Finally, in the third and last section we discuss a 1-parameter family of nontrivial Ricci–flat metrics on \(\mathbb {C}^2\), called Taub-NUT metrics. The diastasis associated to these metrics is rotation invariant, i.e. depends only on the module of the variables, but it is not explicitly given and it is still unknown whether or not they are projectively induced for small values of the parameter.

References

  1. 10.
    E. Calabi, Isometric imbedding of complex manifolds. Ann. Math. 58, 1–23 (1953)MathSciNetCrossRefGoogle Scholar
  2. 11.
    E. Calabi, A construction of nonhomogeneous Einstein metrics, in Proceedings of Symposia in Pure Mathematics, vol. 27 (American Mathematical Society, Providence, 1975)Google Scholar
  3. 14.
    L. Comtet, Advanced Combinatorics, the Art of the Finite and Infinite Expansion (Springer, Berlin, 1974)zbMATHGoogle Scholar
  4. 16.
    D. Cvijović, New identities for the partial Bell polynomials. Appl. Math. Lett. 28(9), 1544–1547 (2011)MathSciNetCrossRefGoogle Scholar
  5. 33.
    R.S. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity. Contemporary Mathematics (Santa Cruz, CA, 1986), vol. 71 (American Mathematical Society, Providence, 1988), pp. 237–262Google Scholar
  6. 45.
    E.E. Kummer, Über die Transzendenten, welche aus wiederholten Integrationen rationaler Funktionen entstehen. J. Reine Angew. Math. (Crelle) 21, 74–90 (1840)CrossRefGoogle Scholar
  7. 46.
    C. Lebrun, Complete Ricci-flat Kähler metrics on \(\mathbb{C}^n\) need not be flat. Proc. Symp. Pure Math. 52(Part 2), 297–304 (1991)Google Scholar
  8. 47.
    L. Lewin, Structural Properties of Polylogarithms (American Mathematical Society, Providence, 1991)CrossRefGoogle Scholar
  9. 56.
    A. Loi, M. Zedda, On Calabi’s diastasis function of the Cigar metric. J. Geom. Phys. 110, 269–276 (2016)MathSciNetCrossRefGoogle Scholar
  10. 59.
    A. Loi, M. Zedda, F. Zuddas, Some remarks on the Kähler geometry of the Taub-NUT metrics. Ann. Global Anal. Geom. 41(4), 515–533 (2012)MathSciNetCrossRefGoogle Scholar
  11. 68.
    O. Suzuki, Remarks on continuation problems of Calabi’s diastatic functions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(1), 45–49 (1982)MathSciNetzbMATHGoogle Scholar
  12. 80.
    J.A. Wolf, On Calabi’s inhomogeneous Einstein-Kähler manifolds. Proc. Am. Math. Soc. 63(2), 287–288 (1977)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrea Loi
    • 1
  • Michela Zedda
    • 2
  1. 1.Department of Mathematics & Computer ScienceUniversity of CagliariCagliariItaly
  2. 2.Department of Mathematical, Physical & Computer SciencesUniversity of ParmaParmaItaly

Personalised recommendations