Skip to main content

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 23))

  • 415 Accesses

Abstract

A Kähler manifold (M, g) is Einstein when there exists \(\lambda \in \mathbb {R}\) such that ρ = λω, where ω is the Kähler form associated to g and ρ is its Ricci form. The constant λ is called the Einstein constant and it turns out that λ = s∕2n, where s is the scalar curvature of the metric g and n the complex dimension of M (as a general reference for this chapter see e.g. Tian (Canonical Metrics in Kähler Geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000)). If \(\omega =\frac {i}{2} \sum _{j=1}^{n}g_{\alpha \bar {\beta }} dz_{\alpha }\wedge d\bar {z}_{\bar {\beta }}\) is the local expression of ω on an open set U with local coordinates (z 1, …, z n) centered at some point p then the Ricci form is the 2-form on M of type (1, 1) defined by

$$\displaystyle \begin{aligned} \rho =-i\partial\bar{\partial}\log\det g_{\alpha\bar{\beta}}. \end{aligned} $$
(4.1)

By the \(\partial \bar {\partial }\)-Lemma (and by shrinking U if necessary) this is equivalent to require that

$$\displaystyle \begin{aligned} \det(g_{\alpha\bar{\beta}})=e^{-\frac{\lambda}{2}\mathrm{D}_0(z)+f+\bar f}, \end{aligned} $$
(4.2)

for some holomorphic function f, where Dp denotes Calabi’s diastasis function centered at p. In this chapter we study Kähler immersions of Kähler–Einstein manifolds into complex space forms . We begin describing in the next section the work of Umehara (Tohoku Math J 39:385–389, 1987) which completely classifies Kähler–Einstein manifolds admitting a Kähler immersion into the finite dimensional complex hyperbolic or flat space. In Sect. 4.3 we summarize what is known about Kähler immersions of Kähler–Einstein manifolds into the finite dimensional complex projective space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Arezzo, A. Loi, A note on Kähler-Einstein metrics and Bochner’s coordinates. Abh. Math. Semin. Univ. Hambg. 74, 49–55 (2004)

    Article  Google Scholar 

  2. A. Borel, Linear Algebraic Groups. GTM, 2nd edn., vol. 126 (Springer, New York, 1991)

    Google Scholar 

  3. S.S. Chern, On Einstein hypersurfaces in a Kähler manifold of constant bisectional curvature. J. Differ. Geom. 1, 21–31 (1967)

    Article  Google Scholar 

  4. D. Hulin, Sous-variétés complexes d’Einstein de l’espace projectif. Bull. Soc. Math. France 124, 277–298 (1996)

    Article  MathSciNet  Google Scholar 

  5. D. Hulin, Kähler–Einstein metrics and projective embeddings. J. Geom. Anal. 10(3), 525–528 (2000)

    Article  MathSciNet  Google Scholar 

  6. S. Kobayashi, Compact Kaehler manifolds with positive Ricci tensor. Bull. Am. Math. Soc. 67, 412–413 (1961)

    Article  MathSciNet  Google Scholar 

  7. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. II (Interscience Pubishers, New York, 1969)

    MATH  Google Scholar 

  8. S. Nishikawa, The Gauss map of Kaehler immersions.Tōhoku Math. J. 27, 453–460 (1975)

    Google Scholar 

  9. M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature. J. Differ. Geom. 2, 217–223 (1968)

    Article  MathSciNet  Google Scholar 

  10. M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces. Jpn. J. Math. 4, 171–219 (1978)

    Article  Google Scholar 

  11. G. Tian, Canonical Metrics in Kähler Geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel, 2000)

    Google Scholar 

  12. K. Tsukada, Einstein-Kähler Submanifolds with codimension two in a Complex Space Form. Math. Ann. 274, 503–516 (1986)

    Article  MathSciNet  Google Scholar 

  13. M. Umehara, Einstein-Kähler submanifolds of complex linear or hyperbolic space. Tohoku Math. J. 39, 385–389 (1987)

    Article  MathSciNet  Google Scholar 

  14. M. Umehara, Diastases and real analytic functions on complex manifolds. J. Math. Soc. Jpn. 40(3), 519–539 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loi, A., Zedda, M. (2018). Kähler–Einstein Manifolds. In: Kähler Immersions of Kähler Manifolds into Complex Space Forms. Lecture Notes of the Unione Matematica Italiana, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-99483-3_4

Download citation

Publish with us

Policies and ethics