Skip to main content

Influence of Irreversible Contacts on the Stiffness of Dense Polydisperse Packings

  • Conference paper
  • First Online:
Micro to MACRO Mathematical Modelling in Soil Mechanics

Part of the book series: Trends in Mathematics ((TM))

  • 1234 Accesses

Abstract

Modelling granular materials can help us to understand their behaviour on the microscopic scale, and to obtain macroscopic continuum relations by a micro-macro transition approach. In this paper, the Discrete Element Method (DEM) is used to investigate the influence of the irreversibility at the contact level on the macroscopic behaviour of granular packings in the context of an elasto-plastic cohesive contact model. From the microscopic contact characteristics the effective stiffness parameters are determined at different volume fractions. The conventional way to calculate the stiffness of a packing is to apply compression or shear strain to the entire system and measure the stress response. The results show that the stiffness of the packings increases with the volume fraction as expected. Surprisingly, the samples experience multiple regimes depending on the applied strain and the hysteretic contact model. In the limit of elastic regime at very small strain, all contacts have equal unloading (reversible) stiffness k 2. As the strain increases, the contacts transit to the loading stiffness branch and the macroscopic stiffness show a second plateau, where the microstructure of the packing does not change but the contact forces do due to the (irreversible) transition from the unloading to the loading branch and the corresponding reduction in stiffness by k 1k 2. Only for much larger strain particles start to rearrange and the overall behaviour becomes plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  2. Gilabert, F., et al.: Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys. Rev. E 75, 011303 (2007)

    Article  MathSciNet  Google Scholar 

  3. Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12, 239252 (2010)

    Article  Google Scholar 

  4. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  5. Kievitsbosch, R., et al.: Influence of dry cohesion on the micro-and macro-mechanical properties of dense polydisperse powders & grains. EPJ Web Conf. 140, 08016 (2017)

    Article  Google Scholar 

  6. Kruyt, N.P., Rothenburg, L.: Micromechanical definition of the strain tensor for granular materials. J. Appl. Mech. 63, 706–711 (1996)

    Article  Google Scholar 

  7. Kumar, N., Luding, S.: Memory of jamming multiscale models for soft and granular matter. Granul. Matter 18, 58 (2016)

    Article  Google Scholar 

  8. Kumar, N., Luding, S., Magnanimo, V.: Macroscopic model with anisotropy based on micromacro information. Acta Mech. 225, 23192343 (2014)

    Article  Google Scholar 

  9. Luding, S.: Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civil Eng. 12, 785–826 (2008)

    Article  Google Scholar 

  10. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235246 (2008)

    Article  Google Scholar 

  11. Makse, H.A., et al.: Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E 70, 061302 (2004)

    Article  Google Scholar 

  12. Pasha, M., Dogbe, S., Hare, C., Hassanpour, A., Ghadiri, M.: A linear model of elasto-plastic and adhesive contact deformation. Granul. Matter 16, 151–162 (2014)

    Article  Google Scholar 

  13. Roy, S., Singh, A., Luding, S., Weinhart, T.: Micromacro transition and simplified contact models for wet granular materials. Comput. Particle Mech. 3, 449462 (2016)

    Article  Google Scholar 

  14. Roy, S., et al.: A general-(ized) local rheology for wet granular materials, New J. Phys. 19, 043014 (2017)

    Article  Google Scholar 

  15. Shen, Z., et al.: Shear strength of unsaturated granular soils: three-dimensional discrete element analyses. Granul. Matter 18, 37 (2016)

    Article  Google Scholar 

  16. Singh, A., Magnanimo, V., Luding, S.: Effect of friction and cohesion on anisotropy in quasistatic granular materials under shear. AIP Conf. Proc. 1542, 682685 (2013)

    Google Scholar 

  17. Singh, A., Magnanimo, V., Luding, S.: A contact model for sticking of adhesive mesoscopic particles. arXiv (2015), pp. 1–55

    Google Scholar 

  18. Sorace, C.M., Louge, M.Y., Crozier, M.D., Law, V.H.C.: High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech. Res. Commun. 36, 364–368 (2009)

    Article  Google Scholar 

  19. Taghizadeh, K., et al.: Understanding the effects of inter-particle contact friction on the elastic moduli of granular materials. IOP Conf. Ser. Earth Environ. Sci. 26, 012008 (2015)

    Article  Google Scholar 

  20. Taghizadeh, K., Magnanimo, V., Luding, S.: DEM applied to soil mechanics. ALERT Doctoral School 2017 Discrete Element Modeling, 129 (2017)

    Google Scholar 

  21. Taghizadeh, K., Luding, S., Magnanimo, V.: Micromechanical study of the elastic stiffness in frictional granular solids. In preparation (2018)

    Google Scholar 

  22. Thakur, S.C., Ahmadian, H., Sun, J., Ooi, J.Y.: An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 12, 2 (2014)

    Article  Google Scholar 

  23. Thornton, C., Ning, Z.: A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99, 154–162 (1998)

    Article  Google Scholar 

  24. Tomas, J.: Fundamentals of cohesive powder consolidation and flow. Granul. Matter 6, 7586 (2004)

    Article  Google Scholar 

  25. Walton, O.R., Braun, R.L.: Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949980 (1986)

    Article  Google Scholar 

  26. Yang, R., Zou, R., Yu, A., Choi, S.K.: Characterization of interparticle forces in the packing of cohesive fine particles. Phys. Rev. E 78, 031302 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Taghizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smit, H., Kievitsbosch, R., Magnanimo, V., Luding, S., Taghizadeh, K. (2018). Influence of Irreversible Contacts on the Stiffness of Dense Polydisperse Packings. In: Giovine, P., Mariano, P., Mortara, G. (eds) Micro to MACRO Mathematical Modelling in Soil Mechanics. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-99474-1_33

Download citation

Publish with us

Policies and ethics