Skip to main content

Particle Shape Distribution Effects on the Triaxial Response of Sands: A DEM Study

  • Conference paper
  • First Online:
Micro to MACRO Mathematical Modelling in Soil Mechanics

Part of the book series: Trends in Mathematics ((TM))

Abstract

It is widely recognised that particle shape influences the mechanical response of granular materials. Rolling resistance elasto-plastic contact models are frequently used to approximate particle shape effects in simulations using the Discrete Element Method (DEM). Such contact models require calibration of several micro-parameters, most importantly a rolling resistance coefficient. In this work, the value of rolling resistance is directly linked to true sphericity, a basic measure of grain shape. When shape measurements are performed, this link enables independent evaluation of the rolling resistance coefficient. It does also allow the characteristic shape variability of natural soils to be easily taken into account. In this work, we explore the effect of shape variability on the triaxial response of sand. It is shown, using realistic values of shape distributions, that shape variability significantly affects observed triaxial strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932)

    Article  Google Scholar 

  2. Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Petrol. 11, 64–72 (1941)

    Article  Google Scholar 

  3. Barret, P.J.: The shape of rock particle, a critical review. Sedimentology. 27, 291–303 (1980). https://doi.org/10.1111/j.1365-3091.1980.tb01179.x

    Article  Google Scholar 

  4. Alshibli, K.A., Druckrey, A.M., Al-Raoush, R.I., et al.: Quantifying morphology of sands using 3D imaging. J. Mater. Civ. Eng. 27, 04014275 (2015). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001246

    Article  Google Scholar 

  5. Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: Effects of grain morphology on critical state: a computational analysis. Acta Geotech. 11, 493–503 (2016). https://doi.org/10.1007/s11440-015-0422-8

    Article  Google Scholar 

  6. Zhao, B., Wang, J.: 3D quantitative shape analysis on form, roundness, and compactness with micro-CT. Powder Technol. 291, 262–275 (2016). https://doi.org/10.1016/j.powtec.2015.12.029

    Article  Google Scholar 

  7. Andò, E., Hall, S.A., Viggiani, G., et al.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7, 1–13 (2012). https://doi.org/10.1007/s11440-011-0151-6

    Article  Google Scholar 

  8. Andò, E.: Experimental investigation of microstructural changes in deforming granular media using x-ray tomography. Mechanics. Université de Grenoble (2013)

    Google Scholar 

  9. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique. 29, 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  10. Katagiri, J., Matsushima, T., Yamada, Y., et al.: Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul. Matter. 12, 491–497 (2010). https://doi.org/10.1007/s10035-010-0207-6

    Article  MATH  Google Scholar 

  11. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter. 9, 69–80 (2007). https://doi.org/10.1007/s10035-006-0021-3

    Article  Google Scholar 

  12. Elias, J.: DEM simulation of railway ballast using polyhedral elemental shapes. In: III International Conference Particle-based Methods – Fundamentals and Applications, pp. 1–10 (2013)

    Google Scholar 

  13. Langston, P., Ai, J., Yu, H.-S.: Simple shear in 3D DEM polyhedral particles and in a simplified 2D continuum model. Granul. Matter. 15, 595–606 (2013). https://doi.org/10.1007/s10035-013-0421-0

    Article  Google Scholar 

  14. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids. 111, 375–392 (2018). https://doi.org/10.1016/j.jmps.2017.10.003

    Article  Google Scholar 

  15. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)

    Article  Google Scholar 

  16. Jiang, M.J.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005). https://doi.org/10.1016/j.compgeo.2005.05.001

    Article  Google Scholar 

  17. Wensrich, C.M., Katterfeld, A., Sugo, D.: Characterisation of the effects of particle shape using a normalised contact eccentricity. Granul. Matter. 16, 327–337 (2014). https://doi.org/10.1007/s10035-013-0465-1

    Article  Google Scholar 

  18. Zhou, B., Huang, R., Wang, H., Wang, J.: DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granul. Matter. 15(3), 315–326 (2013). https://doi.org/10.1007/s10035-013-0409-9

    Article  Google Scholar 

  19. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000). https://doi.org/10.1016/S0032-5910(99)00236-3

    Article  Google Scholar 

  20. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E. 78, 1–11 (2008). https://doi.org/10.1103/PhysRevE.78.021301

    Article  Google Scholar 

Download references

Acknowledgments

The support of EU through 645665—GEO-RAMP—MSCA-RISE and of the Ministry of Economy of Spain through research Grant BIA2014-59467-R is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rorato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rorato, R., Arroyo, M., Gens, A., Andò, E., Viggiani, G. (2018). Particle Shape Distribution Effects on the Triaxial Response of Sands: A DEM Study. In: Giovine, P., Mariano, P., Mortara, G. (eds) Micro to MACRO Mathematical Modelling in Soil Mechanics. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-99474-1_28

Download citation

Publish with us

Policies and ethics