Skip to main content

Overview of High-Energy X-Ray Diffraction Microscopy (HEDM) for Mesoscale Material Characterization in Three-Dimensions

  • Chapter
  • First Online:
Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 280))

Abstract

Over the past two decades, several non-destructive techniques have been developed at various light sources for characterizing polycrystalline materials microstructure in three-dimensions (3D) and under various in-situ thermo-mechanical conditions. High-energy X-ray diffraction microscopy (HEDM) is one of the non-destructive techniques that facilitates 3D microstructure measurements at the mesoscale. Mainly, two variations of HEDM techniques are widely used: (1) Near-field (nf) and (2) far-field (ff) which are employed for non-destructive measurements of spatially resolved orientation (\(\sim \)1.5 \(\upmu \)m and 0.01\(^\circ \)), grain resolved orientation, and elastic strain tensor (\(\sim \)10\(^{-3}\)–10\(^{-4}\)) from representative volume elements (RVE) with hundreds of bulk grains in the measured microstructure (mm\(^{3}\)). To date HEDM has been utilized to study variety of material systems under quasi-static conditions, while tracking microstructure evolution. This has revealed new physical mechanisms that were previously not observed through destructive testing and characterization. Furthermore, measured 3D microstructural evolution data obtained from HEDM are valuable for informing, developing, and validating microstructure aware models for accurate material property predictions. A path forward entails utilizing HEDM for initial material characterization for enabling microstructure evolution measurements under dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Crabtree, J. Sarrao, P. Alivisatos, W. Barletta, F. Bates, G. Brown, R. French, L. Greene, J. Hemminger, M. Kastner et al., From quanta to the continuum: opportunities for mesoscale science. Technical report, USDOE Office of Science (SC) (United States) (2012)

    Google Scholar 

  2. D.L. McDowell, A perspective on trends in multiscale plasticity. Int. J. Plast. 26(9), 1280–1309 (2010)

    Article  Google Scholar 

  3. D. Krajcinovic, Damage mechanics: accomplishments, trends and needs. Int. J. Solids Struct. 37(1), 267–277 (2000)

    Article  MathSciNet  Google Scholar 

  4. R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, A.D. Rollett, Polycrystal plasticity: comparison between grain-scale observations of deformation and simulations. Annu. Rev. Condens. Matter Phys. 5(1), 317–346 (2014)

    Article  ADS  Google Scholar 

  5. R. A. Schwarzer, D. P. Field, B. L. Adams, M. Kumar, A. J. Schwartz, Present state of electron backscatter diffraction and prospective developments in Electron backscatter diffraction in materials science. (Springer, 2009), pp. 1–20

    Google Scholar 

  6. H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, D.J. Jensen, Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 34(6), 751–756 (2001)

    Article  Google Scholar 

  7. S. Schmidt, H.F. Poulsen, G.B.M. Vaughan, Structural refinements of the individual grains within polycrystals and powders. J. Appl. Crystallogr. 36(2), 326–332 (2003)

    Article  Google Scholar 

  8. H.F. Poulsen, Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, vol. 205 (Springer Science & Business Media, 2004)

    Google Scholar 

  9. R.A. Lebensohn, R. Pokharel, Interpretation of microstructural effects on porosity evolution using a combined dilatational/crystal plasticity computational approach. JOM 66(3), 437–443 (2014)

    Article  Google Scholar 

  10. R. Pokharel, R.A. Lebensohn, Instantiation of crystal plasticity simulations for micromechanical modelling with direct input from microstructural data collected at light sources. Scr. Mater. 132, 73–77 (2017)

    Article  Google Scholar 

  11. K. Chatterjee, J.Y.P. Ko, J.T. Weiss, H.T. Philipp, J. Becker, P. Purohit, S.M. Gruner, A.J. Beaudoin, Study of residual stresses in Ti-7Al using theory and experiments. J. Mech. Phys. Solids (2017)

    Google Scholar 

  12. D.C. Pagan, P.A. Shade, N.R. Barton, J.-S. Park, P. Kenesei, D.B. Menasche, J.V. Bernier, Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Mater. 128, 406–417 (2017)

    Article  Google Scholar 

  13. D.L. McDowell, Multiscale crystalline plasticity for materials design, in Computational Materials System Design (Springer, 2018), pp. 105–146

    Google Scholar 

  14. U. Lienert, S.F. Li, C.M. Hefferan, J. Lind, R.M. Suter, J.V. Bernier, N.R. Barton, M.C. Brandes, M.J. Mills, M.P. Miller, High-energy diffraction microscopy at the advanced photon source. JOM J. Miner. Metals Mater. Soc. 63(7), 70–77 (2011)

    Article  Google Scholar 

  15. C.M. Hefferan, J. Lind, S.F. Li, U. Lienert, A.D. Rollett, R.M. Suter, Observation of recovery and recrystallization in high-purity aluminum measured with forward modeling analysis of high-energy diffraction microscopy. Acta Mater. 60(10), 4311–4318 (2012)

    Article  Google Scholar 

  16. S.F. Li, J. Lind, C.M. Hefferan, R. Pokharel, U. Lienert, A.D. Rollett, R.M. Suter, Three-dimensional plastic response in polycrystalline copper via near-field high-energy X-ray diffraction microscopy. J. Appl. Crystallogr. 45(6), 1098–1108 (2012)

    Article  Google Scholar 

  17. R. Pokharel, J. Lind, S.F. Li, P. Kenesei, R.A. Lebensohn, R.M. Suter, A.D. Rollett, In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int. J. Plast. 67, 217–234 (2015)

    Article  Google Scholar 

  18. J. Lind, S.F. Li, R. Pokharel, U. Lienert, A.D. Rollett, R.M. Suter, Tensile twin nucleation events coupled to neighboring slip observed in three dimensions. Acta Mater. 76, 213–220 (2014)

    Article  Google Scholar 

  19. C.A. Stein, A. Cerrone, T. Ozturk, S. Lee, P. Kenesei, H. Tucker, R. Pokharel, J. Lind, C. Hefferan, R.M. Suter, Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy. Curr. Opin. Solid State Mater. Sci. 18(4), 244–252 (2014)

    Article  ADS  Google Scholar 

  20. J.F. Bingert, R.M. Suter, J. Lind, S.F. Li, R. Pokharel, C.P. Trujillo, High-energy diffraction microscopy characterization of spall damage, in Dynamic Behavior of Materials, vol. 1 (Springer, 2014), pp. 397–403

    Google Scholar 

  21. B. Lin, Y. Jin, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, M. Bernacki, N. Bozzolo, A.D. Rollett, G.S. Rohrer, Observation of annealing twin nucleation at triple lines in nickel during grain growth. Acta Mater. 99, 63–68 (2015)

    Article  Google Scholar 

  22. A. D. Spear, S. F. Li, J. F. Lind, R. M. Suter, A. R. Ingraffea, Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta. Materialia. 76, 413–424 (2014)

    Article  Google Scholar 

  23. J. Oddershede, S. Schmidt, H.F. Poulsen, H.O. Sorensen, J. Wright, W. Reimers, Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction. J. Appl. Crystallogr. 43(3), 539–549 (2010)

    Article  Google Scholar 

  24. J.V. Bernier, N.R. Barton, U. Lienert, M.P. Miller, Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46(7), 527–547 (2011)

    Article  Google Scholar 

  25. J. Oddershede, S. Schmidt, H.F. Poulsen, L. Margulies, J. Wright, M. Moscicki, W. Reimers, G. Winther, Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction. Mater. Charact. 62(7), 651–660 (2011)

    Article  Google Scholar 

  26. N.R. Barton, J.V. Bernier, A method for intragranular orientation and lattice strain distribution determination. J. Appl. Crystallogr. 45(6), 1145–1155 (2012)

    Article  Google Scholar 

  27. D.C. Pagan, M.P. Miller, Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments. J. Appl. Crystallogr. 47(3), 887–898 (2014)

    Article  Google Scholar 

  28. M. Obstalecki, S.L. Wong, P.R. Dawson, M.P. Miller, Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation. Acta Mater. 75, 259–272 (2014)

    Article  Google Scholar 

  29. J. Oddershede, J.P. Wright, A. Beaudoin, G. Winther, Deformation-induced orientation spread in individual bulk grains of an interstitial-free steel. Acta Mater. 85, 301–313 (2015)

    Article  Google Scholar 

  30. G. Winther, J.P. Wright, S. Schmidt, J. Oddershede, Grain interaction mechanisms leading to intragranular orientation spread in tensile deformed bulk grains of interstitial-free steel. Int. J. Plast. 88, 108–125 (2017)

    Article  Google Scholar 

  31. D.C. Pagan, M. Obstalecki, J.-S. Park, M.P. Miller, Analyzing shear band formation with high resolution X-ray diraction. Acta Mater. (2018)

    Google Scholar 

  32. D. Naragani, M. D. Sangid, P. A. Shade, J. C. Schuren, H. Sharma, J. S. Park, ..., I. Parr, Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy. Acta. Materialia. 137, 71–84 (2017)

    Article  Google Scholar 

  33. J.C. Schuren, P.A. Shade, J.V. Bernier, S.F. Li, B. Blank, J. Lind, P. Kenesei, U. Lienert, R.M. Suter, T.J. Turner, New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19(4), 235–244 (2015)

    Article  ADS  Google Scholar 

  34. T.J. Turner, P.A. Shade, J.V. Bernier, S.F. Li, J.C. Schuren, P. Kenesei, R.M. Suter, J. Almer, Crystal plasticity model validation using combined high-energy diffraction microscopy data for a Ti-7Al specimen. Metall. Mater. Trans. A 48(2), 627–647 (2017)

    Article  Google Scholar 

  35. K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. Kenesei, J.-S. Park, A.L. Pilchak, Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM). Int. J. Solids Struct. 94, 35–49 (2016)

    Article  Google Scholar 

  36. H.M. Paranjape, P.P. Paul, H. Sharma, P. Kenesei, J.-S. Park, T.W. Duerig, L.C. Brinson, A.P. Stebner, Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys. J. Mech. Phys. Solids 102, 46–66 (2017)

    Article  ADS  Google Scholar 

  37. D.W. Brown, L. Balogh, D. Byler, C.M. Hefferan, J.F. Hunter, P. Kenesei, S.F. Li, J. Lind, S.R. Niezgoda, R.M. Suter, Demonstration of near field high energy x-ray diffraction microscopy on high-z ceramic nuclear fuel material, in Materials Science Forum, vol. 777 (Trans Tech Publications, 2014), pp. 112–117

    Google Scholar 

  38. R. Pokharel, D. W. Brown, B. Clausen, D. D. Byler, T. L. Ickes, K. J. McClellan, ..., P. Kenesei, Non-destructive characterization of UO2 + x nuclear fuels. Microsc. Today 25(6), 42–47 (2017)

    Article  Google Scholar 

  39. W. Ludwig, S. Schmidt, E.M. Lauridsen, H.F. Poulsen, X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Crystallogr. 41(2), 302–309 (2008)

    Article  Google Scholar 

  40. W. Ludwig, P. Reischig, A. King, M. Herbig, E.M. Lauridsen, G. Johnson, T.J. Marrow, J.-Y. Buffiere, Three-dimensional grain mapping by X-ray diffraction contrast tomography and the use of friedel pairs in diffraction data analysis. Rev. Sci. Instrum. 80(3), 033905 (2009)

    Article  ADS  Google Scholar 

  41. L. Renversade, R. Quey, W. Ludwig, D. Menasche, S. Maddali, R.M. Suter, A. Borbély, Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy. IUCrJ 3(1), 32–42 (2016)

    Article  Google Scholar 

  42. B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415(6874), 887–890 (2002)

    Article  ADS  Google Scholar 

  43. S.C. Vogel, M.A. Bourke, A.S. Losko, R. Pokharel, T.L. Ickes, J.F. Hunter, D.W. Brown, S.L. Voit, K.J. Mcclellan, A. Tremsin, Non-destructive pre-irradiation assessment of un/u-si lanl1 atf formulation. Technical report, Los Alamos National Laboratory (LANL) (2016)

    Google Scholar 

  44. B.E. Warren, X-ray Diffraction (Courier Corporation, 1969)

    Google Scholar 

  45. J.-S. Park, J. Okasinski, K. Chatterjee, Y. Chen, J. Almer, Non-destructive characterization of engineering materials using high-energy X-rays at the advanced photon source. Synchrotron Radiat. News 30(3), 9–16 (2017)

    Article  Google Scholar 

  46. D. E. Boyce, J. V. Bernier, heXRD: Modular, open source software for the analysis of high energy x-ray diffraction data (No. LLNL-SR-609815) (Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013)

    Google Scholar 

  47. S. F. Li, R. M. Suter, Adaptive reconstruction method for three-dimensional orientation imaging. J Appl. Crystallogr. 46(2), 512–524 (2013)

    Article  Google Scholar 

  48. R. Pokharel, Spatially resolved in-situ study of plastic deformation in polycrystalline copper using high-energy X-rays and full-field simulations. Ph.D. thesis (Carnegie Mellon University, 2013)

    Google Scholar 

  49. MIDAS, Microstructural Identification using Diffraction Analysis Software. https://github.com/marinerhemant

  50. T.J. Turner, P.A. Shade, J.V. Bernier, S.F. Li, J.C. Schuren, J. Lind, U. Lienert, P. Kenesei, R.M. Suter, B. Blank, Combined near-and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ. Integr. Mater. Manuf. Innov. 5(1), 5 (2016)

    Article  Google Scholar 

  51. B. Fromm, Y. Zhang, D. Schwen, D. Brown, R. Pokharel, Assessment of marmot grain growth model. Technical report, Idaho National Lab. (INL), Idaho Falls, ID (United States) (2015)

    Google Scholar 

  52. G.M. Hommer, J.S. Park, P.C. Collins, A.L. Pilchak, A.P. Stebner, A new in situ planar biaxial far-field high energy diffraction microscopy experiment, in Advancement of Optical Methods in Experimental Mechanics, vol. 3 (Springer, 2017), pp. 61–70

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Los Alamos National Laboratory for supporting mesoscale science technology awareness and this work. Experimental support on the measurements of ATF fuel and AM samples from the staff of the APS-1-ID-E beamline is also acknowledged. The author is also thankful to Alexander Scheinker and Turab Lookman for their valuable inputs during the course of writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeju Pokharel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pokharel, R. (2018). Overview of High-Energy X-Ray Diffraction Microscopy (HEDM) for Mesoscale Material Characterization in Three-Dimensions. In: Lookman, T., Eidenbenz, S., Alexander, F., Barnes, C. (eds) Materials Discovery and Design. Springer Series in Materials Science, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-319-99465-9_7

Download citation

Publish with us

Policies and ethics