Skip to main content

Is Automated Materials Design and Discovery Possible?

  • Chapter
  • First Online:
Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 280))

  • 1444 Accesses

Abstract

In materials design, we typically want to answer questions such as “Can we optimize the probability that a structure will produce the desired properties within some tolerance?” or “Can we optimize the probability that a transition will occur between the desired initial and final states?” In the vast majority of cases, these problems are addressed indirectly, and with a reduced-dimensional model that approximates the actual system. Why? The tools and techniques traditionally used are not sufficient to provide a general rigorous algorithmic approach to determining and/or validating models of the system. Solving for the structure that maximizes some property very likely will be a global optimization over a nonlinear surface with several local minima and nonlinear constraints, while the tools generally used are linear (or at best quadratic) solvers. This approximation is made to handle the large dimensionality of the problem and be able to apply some basic constraints on the space of possible solutions. Unfortunately, constraints from data, measurements, theory, and other physical information are often only applied post-optimization as a binary form of model validation. Additionally, sampling techniques like Monte Carlo, as well as machine learning and Bayesian inference (which strongly rely on existing observed data to infer the form of the solution), will not perform well when, in terms of structural configurations, discovering the materials in the state that produces the desired property is a rare-event. This is unfortunately the rule, rather than the exception—and thus most searches either require the solution to already have been observed, or at least to be in the locality of the optimum. Fortunately, recent developments in applied mathematics and numerical optimization provide a new suite of tools that should overcome the existing limitations, and make rigorous automated materials discovery and design possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\delta _x\) is the Dirac delta mass on x, i.e. the measure of probability on Borel subsets \(A \subset \mathbb {R}\) such that \(\delta _x(A)=1\) if \(x\in A\) and \(\delta _x(A)=0\) otherwise. The first Dirac delta mass is located at the minimum of the interval \([a,\infty ]\) (since we are interested in maximizing the probability of the event \(\mu [f(X)\ge a]\)). The second Dirac delta mass is located at \(x = a - D\) because we seek to maximize \(p_{\max }\) under the constraints \(p_{\max } a + (1 - p_{\max }) x \le b\) and \(a - x \le D\).

  2. 2.

    This technical requirement is not a serious restriction in practice, since it is satisfied by most common parameter and function spaces. A Radon space is a topological space on which every Borel probability measure \(\mu \) is inner regular in the sense that, for every measurable set E, \(\mu (E) = \sup \{ \mu (K) \mid K \subseteq E \text { is compact} \}\). A simple example of a non-Radon space is the unit interval [0, 1] with the lower limit topology [78, Example 51]: this topology generates the same \(\sigma \)-algebra as does the usual Euclidean topology, and admits the uniform (Lebesgue) probability measure, yet the only compact subsets are countable sets, which necessarily have measure zero.

  3. 3.

    This is a “philosophically reasonable” position to take, since one can verify finitely many such inequalities in finite time.

References

  1. http://github.com/uqfoundation

  2. B. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred, D. Gay, K. Haskell, P. Hough, L. Swiler, DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 5.0 user’s manual. Technical report, Dec 2009. Sandia Technical Report SAND2010-2183

    Google Scholar 

  3. M. Adams, A. Lashgari, B. Li, M. McKerns, J. Mihaly, M. Ortiz, H. Owhadi, A.J. Rosakis, M. Stalzer, T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics. Part II. Systems with uncontrollable inputs and large scatter. J. Mech. Phys. Solids 60(5), 1002–1019 (2012)

    Article  ADS  Google Scholar 

  4. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  Google Scholar 

  5. R.E. Barlow, F. Proschan, Mathematical theory of reliability, in Classics in Applied Mathematics, vol. 17 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996). With contributions by L. C. Hunter, Reprint of the 1965 original [MR 0195566]

    Google Scholar 

  6. J.L. Beck, Bayesian system identification based on probability logic. Struct. Control Health Monit. 17, 825–847 (2010)

    Article  Google Scholar 

  7. J.L. Beck, L.S. Katafygiotis, Updating models and their uncertainties: Bayesian statistical framework. J. Eng. Mech. 124(4), 455–461 (1998)

    Article  Google Scholar 

  8. S. Benson, L. Curfman McInnes, J. More, T. Munson, J. Sarich, TAO user manual (revision 1.10.1) (2010)

    Google Scholar 

  9. J.O. Berger, An overview of robust Bayesian analysis. Test 3(1), 5–124 (1994). With comments and a rejoinder by the author

    Google Scholar 

  10. D. Bertsimas, I. Popescu, Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (electronic) (2005). https://doi.org/10.1137/S1052623401399903

    Article  MathSciNet  Google Scholar 

  11. M. Bieri, C. Schwab, Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198(13–14), 1149–1170 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Boeing, Statistical summary of commercial jet airplane accidents worldwide operations 1959–2009. Technical report, Aviation Safety Boeing Commercial Airplanes, Seattle, Washington 98124-2207, U.S.A., July 2010

    Google Scholar 

  13. A. Certik et al., SymPy: Python Library for Symbolic Mathematics (2011)

    Google Scholar 

  14. M.J. Cliffe, M.T. Dove, D.A. Drabold, A.L. Goodwin, Phys. Rev. Lett. 104, 125501 (2010)

    Article  ADS  Google Scholar 

  15. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  16. W.I.F. David, K. Shankland, L.B. McCusker, C. Baerlocher (eds.), Structure Determination from Powder Diffraction Data (Oxford University Press, Oxford, 2002)

    Google Scholar 

  17. E. Delage, Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010). https://doi.org/10.1287/opre.1090.0741

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Diaconis, D. Freedman, On the consistency of Bayes estimates. Ann. Stat. 14(1), 1–67 (1986). With a discussion and a rejoinder by the authors

    Article  MathSciNet  Google Scholar 

  19. P.W. Diaconis, D. Freedman, Consistency of Bayes estimates for nonparametric regression: normal theory. Bernoulli 4(4), 411–444 (1998)

    Article  MathSciNet  Google Scholar 

  20. A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs (2010)

    Google Scholar 

  21. R.F. Drenick, P.C. Wang, C.B. Yun, A.J. Philippacopoulos, Critical seismic response of nuclear reactors. J. Nucl. Eng. Des. 58(3), 425–435 (1980)

    Article  Google Scholar 

  22. T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Oxford, 2003)

    Google Scholar 

  23. I. Egorov, G. Kretinin, I. Leshchenko, S. Kuptzov, IOSO optimization toolkit—novel software to create better design (2002)

    Google Scholar 

  24. I.H. Eldred, C.G. Webster, P.G. Constantine, Design under uncertainty employing stochastic expansion methods. American Institute of Aeronautics and Astronautics Paper 2008–6001 (2008)

    Google Scholar 

  25. H. Owhadi, C. Scovel, Toward machine wald. in Handbook of Uncertainty Quantification (2016)

    Google Scholar 

  26. L. Esteva, Seismic risk and seismic design, in Seismic Design for Nuclear Power Plants (The M.I.T. Press, 1970), pp. 142–182

    Google Scholar 

  27. D.L. Kroshko et al., OpenOpt

    Google Scholar 

  28. O. Gereben, L. Pusztai, Phys. Rev. B 50, 14136 (1994)

    Article  ADS  Google Scholar 

  29. R. Ghanem, Ingredients for a general purpose stochastic finite elements implementation. Comput. Methods Appl. Mech. Eng. 168(1–4), 19–34 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Ghanem, S. Dham, Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32(3), 239–262 (1998)

    Article  MathSciNet  Google Scholar 

  31. W.D. Gillford, Risk analysis and the acceptable probability of failure. Struct. Eng. 83(15), 25–26 (2005)

    Google Scholar 

  32. J. Goh, M. Sim, Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4, part 1), 902–917 (2010). https://doi.org/10.1287/opre.1090.0795

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Han, M. Tao, U. Topcu, H. Owhadi, R.M. Murray, Convex optimal uncertainty quantification (2014). arXiv:1311.7130

  34. W. Hoeffding, On the distribution of the number of successes in independent trials. Ann. Math. Stat. 27(3), 713–721 (1956)

    Article  MathSciNet  Google Scholar 

  35. W. Hoeffding, The role of assumptions in statistical decisions, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I (University of California Press, Berkeley and Los Angeles, 1956), pp. 105–114

    Google Scholar 

  36. W.A. Hustrulid, M. McCarter, D.J.A. Van Zyl (eds.), Slope Stability in Surface Mining (Society for Mining Metallurgy & Exploration, 2001)

    Google Scholar 

  37. The MathWorks Inc., Technical report, Mar 2009. Technical Report 91710v00

    Google Scholar 

  38. P. Jensen, J. Bard, Algorithms for constrained optimization (supplement to: Operations research models and methods) (2003)

    Google Scholar 

  39. E. Jones et al., SciPy: Open Source Scientific Tools for Python (2001)

    Google Scholar 

  40. P. Juhas, L. Granlund, S.R. Gujarathi, P.M. Duxbury, S.J.L. Billinge, Crystal structure solution from experimentally determined atomic pair distribution functions. J. Appl. Cryst. 43, 623–629 (2010)

    Article  Google Scholar 

  41. P.-H.T. Kamga, B. Li, M. McKerns, L.H. Nguyen, M. Ortiz, H. Owhadi, T.J. Sullivan, Optimal uncertainty quantification with model uncertainty and legacy data. J. Mech. Phys. Solids 72, 1–19 (2014)

    Article  ADS  Google Scholar 

  42. B.K. Kanna, S. Kramer, An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 116, 405 (1994)

    Article  Google Scholar 

  43. K.E. Kelly, The myth of \(10^{-6}\) as a definition of acceptable risk, in Proceedings of the International Congress on the Health Effects of Hazardous Waste, Atlanta (Agency for Toxic Substances and Disease Registry, 1993)

    Google Scholar 

  44. A. Kidane, A. Lashgari, B. Li, M. McKerns, M. Ortiz, H. Owhadi, G. Ravichandran, M. Stalzer, T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics. Part I: Systems with controllable inputs and small scatter. J. Mech. Phys. Solids 60(5), 983–1001 (2012)

    Article  ADS  Google Scholar 

  45. T. Leonard, J.S.J. Hsu, Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 5 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  46. J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics (Springer, New York, 2008)

    MATH  Google Scholar 

  47. L.J. Lucas, H. Owhadi, M. Ortiz, Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities. Comput. Methods Appl. Mech. Eng. 197(51–52), 4591–4609 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. N. Mantel, W.R. Bryan, “Safety” testing of carcinogenic agents. J. Natl. Cancer Inst. 27, 455–470 (1961)

    Google Scholar 

  49. C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, 1989 (Norwich, 1989), London Mathematical Society Lecture Note Series, vol. 141 (Cambridge University Press, Cambridge, 1989), pp. 148–188

    Google Scholar 

  50. C. McDiarmid, Concentration, in Probabilistic Methods for Algorithmic Discrete Mathematics, Algorithms and Combinatorics, vol. 16 (Springer, Berlin, 1998), pp. 195–248

    Google Scholar 

  51. M. McKerns, M. Aivazis, Pathos: A framework for heterogeneous computing (2010)

    Google Scholar 

  52. M. McKerns, P. Hung, M. Aivazis, Mystic: a simple model-independent inversion framework (2009)

    Google Scholar 

  53. M. McKerns, H. Owhadi, C. Scovel, T.J. Sullivan, M. Ortiz, The optimal uncertainty algorithm in the mystic framework. Caltech CACR Technical Report, Aug 2010. http://arxiv.org/pdf/1202.1055v1

  54. M. McKerns, L. Strand, T.J. Sullivan, A. Fang, M. Aivazis, Building a framework for predictive science, in Proceedings of the 10th Python in Science Conference (SciPy 2011), June 2011 (2011), pp. 67–78. http://arxiv.org/pdf/1202.1056

  55. A.C. Narayan, D. Xiu, Distributional sensitivity for uncertainty quantification. Commun. Comput. Phys. 10(1), 140–160 (2011). http://dx.doi.org/10.4208/cicp.160210.300710a

    Article  ADS  MathSciNet  Google Scholar 

  56. J.F. Nash Jr., Equilibrium points in \(n\)-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  57. J. Nash, Non-cooperative games. Ann. Math. 2(54), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  58. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992)

    Google Scholar 

  59. H. Nyquist, IEEE Trans. 47, 617 (1928)

    Google Scholar 

  60. H. Owhadi, Bayesian numerical homogenization (2014). arXiv:1406.6668

  61. H. Owhadi, Multi-grid with rough coefficients and multiresolution operator decomposition from hierarchical information games (2015) (To appear)

    Google Scholar 

  62. H. Owhadi, C. Scovel, Qualitative Robustness in Bayesian Inference (2014). arXiv:1411.3984

  63. H. Owhadi, C. Scovel, Brittleness of Bayesian inference and new Selberg formulas. Commun. Math. Sci. (2015). arXiv:1304.7046

  64. H. Owhadi, C. Scovel, T.J. Sullivan, On the Brittleness of Bayesian Inference (2013). arXiv:1308.6306

  65. H. Owhadi, C. Scovel, T.J. Sullivan, Brittleness of Bayesian inference under finite information in a continuous world. Electron. J. Stat. 9, 1–79 (2015). arXiv:1304.6772

    Article  MathSciNet  Google Scholar 

  66. H. Owhadi, C. Scovel, T.J. Sullivan, M. McKerns, M. Ortiz, Optimal uncertainty quantification. SIAM Rev. 55(2), 271–345 (2013)

    Article  MathSciNet  Google Scholar 

  67. H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48(2), 517–552 (2014)

    Article  MathSciNet  Google Scholar 

  68. F. Rossi, A. Tsoukias (eds.), Algorithmic Decision Theory, First International Conference. Lecture Notes in Computer Science, vol. 5783 (Springer, 2009)

    Google Scholar 

  69. A. Saltelli, K. Chan, E.M. Scott (eds.), Sensitivity Analysis, Wiley Series in Probability and Statistics (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  70. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Snalysis. The Primer (Wiley, Chichester, 2008)

    MATH  Google Scholar 

  71. C. Scovel, I. Steinwart, Hypothesis testing for validation and certification. J. Complex. (2010) (Submitted)

    Google Scholar 

  72. C.E. Shannon, Proc. IRE 37, 10 (1949)

    Article  Google Scholar 

  73. X. Shen, L. Wasserman, Rates of convergence of posterior distributions. Ann. Stat. 29(3), 687–714 (2001)

    Article  MathSciNet  Google Scholar 

  74. I.H. Sloan, Sparse sampling techniques, Presented at 2010 ICMS Uncertainty Quantification workshop (2010)

    Google Scholar 

  75. I.H. Sloan, S. Joe, Lattice Methods for Multiple Integration (Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1994)

    MATH  Google Scholar 

  76. J.E. Smith, Generalized Chebychev inequalities: theory and applications in decision analysis. Oper. Res. 43(5), 807–825 (1995). https://doi.org/10.1287/opre.43.5.807

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. H.M. Soekkha (ed.), Aviation Safety: Human Factors, System Engineering, Flight Operations, Economics, Strategies, Management (VSP, 1997)

    Google Scholar 

  78. L.A. Steen, J.A. Seebach Jr., Counterexamples in Topology (Dover Publications Inc., Mineola, NY, 1995). Reprint of the second (1978) edition

    Google Scholar 

  79. I. Steinwart, A. Christmann, Support Vector Machines. Information Science and Statistics (Springer, New York, 2008)

    MATH  Google Scholar 

  80. R.M. Storn, K.V. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  81. A.M. Stuart, Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  82. T.J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi, M. Ortiz, Optimal uncertainty quantification for legacy data observations of Lipschitz functions. ESAIM Math. Model. Numer. Anal. 47(6), 1657–1689 (2013)

    Article  MathSciNet  Google Scholar 

  83. T.J. Sullivan, U. Topcu, M. McKerns, H. Owhadi, Uncertainty quantification via codimension-one partitioning. Int. J. Numer. Meth. Eng. 85(12), 1499–1521 (2011)

    Article  MathSciNet  Google Scholar 

  84. B.H. Toby, N. Khosrovani, C.B. Dartt, M.E. Davis, J.B. Parise, Structure-directing agents and stacking faults in the con system: a combined crystallographic and computer simulation study. Microporous Mesoporous Mater. 39(1–2), 77–89 (2000)

    Article  Google Scholar 

  85. R.A. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27(2), 232–261 (2007)

    Article  MathSciNet  Google Scholar 

  86. L. Vandenberghe, S. Boyd, K. Comanor, Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  87. P. Venkataraman, Applied Optimization with MATLAB Programming (Wiley, Hoboken, NJ, 2009)

    Google Scholar 

  88. J. Von Neumann, H.H. Goldstine, Numerical inverting of matrices of high order. Bull. Am. Math. Soc. 53, 1021–1099 (1947)

    Article  MathSciNet  Google Scholar 

  89. J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, New Jersey, 1944)

    MATH  Google Scholar 

  90. A. Wald, Statistical decision functions which minimize the maximum risk. Ann. Math. 2(46), 265–280 (1945)

    Article  MathSciNet  Google Scholar 

  91. D. Xiu, Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5(2–4), 242–272 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McKerns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKerns, M. (2018). Is Automated Materials Design and Discovery Possible?. In: Lookman, T., Eidenbenz, S., Alexander, F., Barnes, C. (eds) Materials Discovery and Design. Springer Series in Materials Science, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-319-99465-9_2

Download citation

Publish with us

Policies and ethics