Skip to main content

Flying Network for Emergencies

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 919))

Abstract

The article presents an approach to the organization of a flying network among mobile communication subscribers based on WiFi (VoWiFi) technology in a disaster area where telecommunication infrastructure is completely or partially destroyed. The flying network is organized on the basis of unmanned aerial vehicles (UAVs), which interact with each other based on IEEE 802.11p wireless technology and with mobile subscribers based on IEEE 802.11n/ac wireless technologies. The interaction process between subscribers and UAVs is presented as a queuing system. Based on the developed model were measured and obtained network delay parameters and its value did not exceed 100 ms. The fulfillment of this condition was achieved by varying the number of UAVs and the channel load parameters. A series of numerical experiments showed the permissible number of UAVs to provide an acceptable quality of voice transmission between subscribers that are in the UAV coverage area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Freitas, E.P., et al.: UAV relay network to support WSN connectivity. In: Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems, Moscow, pp. 309–314. IEEE (2010)

    Google Scholar 

  2. Orfanus, D., Eliassen, F., de Freitas, E.P.: Self-organizing relay network supporting remotely deployed sensor nodes in military operations. In: 6th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, pp. 326–333. IEEE (2014)

    Google Scholar 

  3. Vasiliev, D.S., Meitis, D.S., Abilov, A.: Simulation-based comparison of AODV, OLSR and HWMP protocols for flying ad hoc networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 245–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10353-2_21

    Chapter  Google Scholar 

  4. Bekmezci, I., Sahingoz, O.K., Temel, S.: Flying ad-hoc networks: a survey. Ad Hoc Netw. 11, 1254–1270 (2013)

    Article  Google Scholar 

  5. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  6. Kirichek, R., Paramonov, A., Koucheryavy, A.: Flying ubiquitous sensor networks as a queuing system. In: Proceedings of the 17th ICACT, pp. 127–132 (2015)

    Google Scholar 

  7. Kirichek, R., Paramonov, A., Koucheryavy, A.: Swarm of public unmanned aerial vehicles as a queuing network. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 111–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30843-2_12

    Chapter  Google Scholar 

  8. Kirichek, R., Vladyko, A., Paramonov, A., Koucheryavy, A.: Software-defined architecture for flying ubiquitous sensor networking. In: International Conference on Advanced Communication Technology, ICACT, pp. 158–162 (2017)

    Google Scholar 

  9. Shilin, P., Kirichek, R., Paramonov, A., Koucheryavy, A.: Connectivity of VANET segments using UAVs. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 492–500. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_41

    Chapter  Google Scholar 

  10. Kirichek, R., Kulik, V.: Long-range data transmission on flying ubiquitous sensor networks (FUSN) by using LPWAN protocols. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 442–453. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_39

    Chapter  Google Scholar 

  11. Schalk, L.M.: Communication links for unmanned aircraft systems in very low level airspace. In: Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, p. 6B2-1. IEEE (2017)

    Google Scholar 

  12. Li, J., Zhou, Y., Lamont, L.: Communication architectures and protocols for networking unmanned aerial vehicles. In: Globecom Workshops (GC Wkshps), Atlanta, pp. 1415–1420. IEEE (2013)

    Google Scholar 

  13. Andre, T., et al.: Application-driven design of aerial communication networks. IEEE Commun. Mag. 52(5), 129–137 (2014)

    Article  Google Scholar 

  14. Frew, E.W., Brown, T.X.: Airborne communication networks for small unmanned aircraft systems. Proc. IEEE 96(12), 2008–2027 (2008)

    Article  Google Scholar 

  15. Morgenthaler, S., Braun, T., Zhao, Z., Staub, T., Anwander, M.: UAVNet: a mobile wireless mesh network using unmanned aerial vehicles. In: Globecom Workshops (GC Wkshps), Anaheim, pp. 1603–1608. IEEE (2012)

    Google Scholar 

  16. Van der Bergh, B., Chiumento, A., Pollin, S.: LTE in the sky: trading off propagation benefits with interference costs for aerial nodes. IEEE Commun. Mag. 54(5), 44–50 (2016)

    Article  Google Scholar 

  17. Da Conceicao, A.F., Li, J., Florencio, D.A., Kon, F.: Is IEEE 802.11 ready for VoIP? In: IEEE 8th Workshop on Multimedia Signal Processing, pp. 108–113 (2006)

    Google Scholar 

  18. Chagh, Y., Guennoun, Z., Jouihri, Y.: Voice service in 5G network: towards an edge-computing enhancement of voice over Wi-Fi. In: 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 116–120 (2016)

    Google Scholar 

  19. Ngongang, S.F.M., Tadayon, N., Kaddoum, G.: Voice over Wi-Fi: feasibility analysis. In: Advances in Wireless and Optical Communications (RTUWO), pp. 133–138 (2016)

    Google Scholar 

  20. IEEE Standards Association. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE std, 802 (2012)

    Google Scholar 

  21. Kim, S.-Y., Ro, J.-H., Song, H.-K.: Channel estimation scheme for the enhanced reliability in the flying ad-hoc network. Int. J. Eng. Res. Appl. 7(4), 63–66 (2017)

    Google Scholar 

  22. ITU-T Recommendation G.114. One-way transmission time (2003)

    Google Scholar 

  23. Kleinrock, L.: Queueing Systems. Volume 2: Computer Applications, vol. 66. Wiley, New York (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Duy Dinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinh, T.D., Pham, V.D., Kirichek, R., Koucheryavy, A. (2018). Flying Network for Emergencies. In: Vishnevskiy, V., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2018. Communications in Computer and Information Science, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-99447-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99447-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99446-8

  • Online ISBN: 978-3-319-99447-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics