Skip to main content

The Application of Helmholtz Decomposition Method to Investigation of Multicore Fibers and Their Application in Next-Generation Communications Systems

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 919))

Abstract

New optical multicore fibers use their spatial properties in the designs of next-generation systems. To investigate light propagation in such fiber waveguides we use Helmholtz decomposition method.

We consider a waveguide having the constant cross-section S with ideally conducting walls. We assume that the filling of waveguide does not change along its axis and is described by the piecewise continuous functions \(\epsilon \) and \(\mu \) defined on the waveguide cross section. We show that it is possible to make a substitution, which allows dealing only with continuous functions. Instead of discontinuous cross components of the electromagnetic field \(\varvec{E}\) and \(\varvec{H}\) we propose to use four potentials \(u_e, u_h\) and \(v_e, v_h\). Generalizing the Thikhonov-Samarskii theorem, we have proved that any field in the waveguide allows such representation, if we consider the potentials \(u_e, u_h\) as elements of the Sobolev space and the potentials \(v_e, v_h\) as elements of the Sobolev space \({W}^1_2(S)\).

If \(\epsilon \) and \(\mu \) are piecewise constant functions, then in terms of four potentials the Maxwell equations reduce to a pair of Helmholtz equations. This fact means that a few dielectric waveguides placed between ideally conducting walls can be described by a scalar boundary problem. This statement offers a new approach to the investigation of spectral properties of waveguides. First, we can prove the completeness of the system of the normal waves in closed waveguides using standard functional spaces. Second, we can propose a new technique for calculating the normal waves using standard finite elements.

A. A. Tiutiunnik—The publication has been prepared with the support of the “RUDN University Program 5-100” and funded by RFBR according to the research projects No. 18-07-00567 and No. 18-51-18005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell, P.St.J.: Photonic crystal fibers (review paper). Science 299, 358–362 (2003)

    Google Scholar 

  2. Coffey, V.C.: Novel fibers use space to extend capacity limits. Photonics Spectra 47, 52–55 (2013)

    Google Scholar 

  3. Extance, A.: Redefining the limits of optical fibre. Opt. Connect. 9(Q2), 12–13 (2017)

    Google Scholar 

  4. Richardson, D.J.: New optical fibres for high-capacity optical communications. Phil. Trans. R. Soc. A 374, 20140441 (2016)

    Article  Google Scholar 

  5. Malykh, M.D., Sevastianov, L.A., Tiutiunnik, A.A., Nikolaev, N.E.: On the representation of electromagnetic fields in closed waveguides using four scalar potentials. J. Electromagn. Waves Appl. 32(7), 886–898 (2017)

    Article  Google Scholar 

  6. Samarskii, A.A., Tikhonov, A.N.: About representation of the field in a waveguide in the form of the sum of fields TE and TM (in Russian). J. Theor. Phys. 18(7), 959–970 (1948)

    Google Scholar 

  7. Zhang, K., Li, D.: Electromagnetic Theory for Microwaves and Optoelectronics. Springer, Berlin (2007)

    Google Scholar 

  8. Chew, W.C.: Lectures on theory of microwave and optical waveguides (2012). http://wcchew.ece.illinois.edu

  9. Sveshnikov, A.G.: A substantiation of a method for computing the propagation of electromagnetic oscillations in irregular waveguides. U.S.S.R Comput. Math. Math. Phys. 3(2), 413–429 (1963)

    Article  Google Scholar 

  10. Delitsyn, A.L.: On the completeness of the system of eigenvectors of electromagnetic waveguides. Comput. Math. Math. Phys. 51(10), 1771–1776 (2011)

    Article  MathSciNet  Google Scholar 

  11. Delitsyn, A.L.: Application of the finite element method to the calculation of modes of dielectric waveguides. Comput. Math. Math. Phys. 39(2), 298–304 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Lezar, E., Davidson, D.R.: Electromagnetic waveguide analysis. In: Logg, A., Mardal, K.A., Wells, G. (eds.) Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. LNCSE, vol. 84, pp. 629–642. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23099-8_34

    Chapter  Google Scholar 

  13. Delitsyn, A.L.: An approach to the completeness of normal waves in a waveguide with magnetodielectric filling. Differ. Equ. 36(5), 695–700 (2000)

    Article  MathSciNet  Google Scholar 

  14. Malykh, M.D., Sevastianov, L.A., Tiutiunnik, A.A., Nikolaev, N.E.: Diffraction of electromagnetic waves on a waveguide joint. In: EPJ Web of Conferences, vol. 173, p. 02014 (2018)

    Google Scholar 

  15. Duvaut, G., Lions, J.-L.: Les in quations en m canique et en physique. Dunod, Paris (1972)

    Google Scholar 

  16. Stummel, F.: Rand- und Eigenwertaufgaben in Sobolewschen Räumen. Springer, Berlin (1969). https://doi.org/10.1007/BFb0059060

    Book  MATH  Google Scholar 

  17. Keldysh, M.V.: On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators. Russ. Math. Surv. 26(4), 15–44 (1971)

    Article  MathSciNet  Google Scholar 

  18. Bogolyubov, A.N., Delitsyn, A.L., Malykh, M.D.: On the root vectors of a cylindrical waveguide. Comput. Math. Math. Phys. 41(1), 121–124 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Xia, C., Bai, N., Ozdur, I., Zhou, X., Li, G.: Supermodes for optical transmission. Opt. Exp. 19, 16653–16664 (2011)

    Article  Google Scholar 

  20. Ryf, R., et al.: Space-division multiplexed transmission over 4200 km 3-core microstructured fiber. In: presented at the IEEE Optical Fiber Communication Conference, Los Angeles, paper PDP5C.2 (2012)

    Google Scholar 

  21. Arik, S.O., Kahn, J.M.: Coupled-core multi-core fibers for spatial multiplexing. IEEE Photon. Technol. Lett. 25(21), 2054–2057 (2013)

    Article  Google Scholar 

  22. Li, L., et al.: Phase locking and in-phase supermode selection in monolithic multicore fiber lasers. Opt. Lett. 31, 2577–2579 (2006)

    Article  Google Scholar 

  23. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E.S., Watts, M.R.: Large-scale nanophotonic phased array. Nature 493, 195–199 (2013)

    Article  Google Scholar 

  24. Bochove, E.J., Shakir, S.: Analysis of a spatial-filtering passive fiber laser beam combining system. IEEE J. Sel. Topics Quantum Electron. 15(2), 320–327 (2009)

    Article  Google Scholar 

  25. Corcoran, C.J., Durville, F.: Passive phasing in a coherent laser array. IEEE J. Sel. Topics Quantum Electron. 15(2), 294–300 (2009)

    Article  Google Scholar 

  26. Kim, D., et al.: Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle. Opt. Lett. 39, 1921–1924 (2014)

    Article  Google Scholar 

  27. Reichenbach, K.L., Xu, C.: Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Exp. 15, 2151–2165 (2007)

    Article  Google Scholar 

  28. Sensor fiber having a multicore optical waveguide including fiber Bragg gratings, US patient #20140029889A1. http://www.freepatentsonline.com/8123400.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Divakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divakov, D.V., Lovetskiy, K.P., Malykh, M.D., Tiutiunnik, A.A. (2018). The Application of Helmholtz Decomposition Method to Investigation of Multicore Fibers and Their Application in Next-Generation Communications Systems. In: Vishnevskiy, V., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2018. Communications in Computer and Information Science, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-99447-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99447-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99446-8

  • Online ISBN: 978-3-319-99447-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics