Skip to main content

Characterization of the Mechanical Properties of Ancient Masonry from a Non-destructive Method In Situ

  • Conference paper
Structural Analysis of Historical Constructions

Abstract

This paper presents a methodology for determining the mechanical properties of the masonry elements by mean of seismic techniques and how these are included in a numerical model of a case study of a building. This work presents partial results of a research in process of doctoral thesis. It is part of the line of Non-Destructive Test (NDT) in situ that uses the measuring of seismic waves travel time to obtain shear and compressional waves; with these parameters it is possible to obtain the mechanical properties of the masonry of ancient buildings as Young’s Module, Poisson Ratio and density. The obtained data comes from a case study, the Temple of San Antonio de Padua, located in Aguascalientes, Mexico. In addition, a numerical model developed in SAP2000 is presented with the characterized properties obtained from the analysis. Results of this research will contribute future numerical analysis because it will be possible to obtain the values of each part of the building, and in this way, offer more reliable information about the behavior of the building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey Jr D, Schuller M (2010) Nondestructive evaluation: structural performance of masonry. Practice points 9, Association for Preservation Technology International, Illinois, United States of America

    Google Scholar 

  2. Arêde A, Costa C, Gomes AT et al (2017) Experimental characterization of the mechanical behaviour of components and materials of stone masonry railway bridges. Constr Build Mater 153:663–681. https://doi.org/10.1016/j.conbuildmat.2017.07.069

    Article  Google Scholar 

  3. Oliveira D (2000) Mechanical characterization of stone and brick masonry. University of Minho, Guimaraes, Portugal, Report 00-DEC/E-4

    Google Scholar 

  4. Jafari S, Rots J, Esposito R, Messali F (2017) Characterizing the material properties of dutch unreinforced masonry. In: Procedia engineering. international conference on analytical models and new concepts in concrete and masonry structures, AMCM 2017, vol 193, pp 250–257. https://doi.org/10.1016/j.proeng.2017.06.211

  5. Almeida C, Guedes JP, Arêde A et al (2012) Physical characterization and compression tests of one leaf stone masonry walls. Constr Build Mater 30:188–197. https://doi.org/10.1016/j.conbuildmat.2011.11.043

    Article  Google Scholar 

  6. Vekey RC (1988) Non-destructive test methods for masonry structures. In: IBMAC 1988: 8th international brick and block masonry conference, pp 1673–1681

    Google Scholar 

  7. McCann DM, Forde MC (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int 34:71–84. https://doi.org/10.1016/S0963-8695(00)00032-3

    Article  Google Scholar 

  8. Schuller MP (2003) Nondestructive testing and damage assessment of masonry structures. Prog Struct Eng Mater 5:239–251. https://doi.org/10.1002/pse.160

    Article  Google Scholar 

  9. Capozzoli L, Rizzo E (2017) Combined NDT techniques in civil engineering applications: laboratory and real test. Constr Build Mater 15:1139–1150. https://doi.org/10.1016/j.conbuildmat.2017.07.147

    Article  Google Scholar 

  10. Magenes G, Penna A, Galasco A, Rota M (2010) Experimental characterization of stone masonry mechanical properties. In: Jäger W, Haseltine B, Anton F (eds) Proceedings of the eight international masonry conference. International Masonry Society; Dresden, Germany

    Google Scholar 

  11. Jain A, Kathuria A, Kumar A et al (2013) Combined use of non-destructive tests for assessment of strength of concrete in structure. In: Procedia Eng. the 2nd international conference on rehabilitation and maintenance in civil engineering (ICRMCE), vol 54, pp 241–251. https://doi.org/10.1016/j.proeng.2013.03.022

  12. Vasanelli E, Colangiuli D, Calia A et al (2015) Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 60:33–40. https://doi.org/10.1016/j.ultras.2015.02.010

    Article  Google Scholar 

  13. Vasanelli E, Calia A, Colangiuli D et al (2016) Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of uniaxial compressive strength of stone masonry units. Constr Build Mater 124:575–581. https://doi.org/10.1016/j.conbuildmat.2016.07.130

    Article  Google Scholar 

  14. Vasanelli E, Colangiuli D, Calia A et al (2017) Combining non-invasive techniques for reliable prediction of soft stone strength in historic masonries. Constr Build Mater 146:744–754. https://doi.org/10.1016/j.conbuildmat.2017.04.146

    Article  Google Scholar 

  15. Sheriff RE, Geldart LP (1991) Exploración sismológica. Vol I.- Historia, teoría y obtención de datos., Firts. LIMUSA, S.A. de C.V., Mexico

    Google Scholar 

  16. Orenday-Tapia EE, Pacheco-Martínez J, Padilla-Ceniceros R, López-Doncel RA (2018) In situ and nondestructive characterization of mechanical properties of heritage stone masonry. Environ Earth Sci 77:286. https://doi.org/10.1007/s12665-018-7473-8

    Article  Google Scholar 

  17. McCann DM, Entwisle DC (1992) Determination of Young’s modulus of the rock mass from geophysical well logs. Geol Soc Lond Spec Publ 65:317–325. https://doi.org/10.1144/GSL.SP.1992.065.01.24

    Article  Google Scholar 

  18. Schuck A, Lange G (2007) Seismic methods. Environ Geol, 337–402. https://doi.org/10.1007/978-3-540-74671-3_11

  19. Han D, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophys. Soc. Explor. Geophy. 51(11):2093–2107. https://doi.org/10.1190/1.1442062

    Article  Google Scholar 

  20. Cook N (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Min Sci Geomech Abstr 29(3):198–223. https://doi.org/10.1016/0148-9062(92)91656-P

    Article  Google Scholar 

  21. Eitzenberger A (2012) Wave propagation in rock and the influence of discontinuities. Doctoral thesis, Luleå University of Technology, Sweden

    Google Scholar 

  22. Lee JS, Yoon HK (2014) Porosity estimation based on seismic wave velocity at shallow depths. J Appl Geophys 105:185–190. https://doi.org/10.1016/j.jappgeo.2014.03.018

    Article  Google Scholar 

  23. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density - the diagnostic basics for stratigraphic traps. Geophys Soc Explor Geophys 39(6):770–780

    Google Scholar 

  24. Reyes A (2013) Refugio Reyes, una vida. El Aprendizaje. Consejo Nacional para la Cultura y las Artes, CONACULTA, Aguascalientes, México

    Google Scholar 

  25. Navarro M (2013) Levantamiento geométrico y de daños del templo de San Antonio y análisis estructural de la situación actual. Master thesis, Universidad Autónoma de Aguascalientes, Mexico

    Google Scholar 

  26. Orenday E (2016) Estudio de caracterización de las propiedades mecánicas del Templo de San Antonio para su análisis dinámico. Universidad Autónoma de Aguascalientes, Mexico

    Google Scholar 

  27. Morales RA (2007) Bóvedas mexicanas

    Google Scholar 

  28. Nie YJ (1988) Evaluation of dynamic compaction by elastic wave method. J Hydrosci Eng 2:55–65

    Google Scholar 

  29. Zhen YL, Xia SY (1997) The study on the dynamic modulus of geomaterials. Chin J Geotech Eng 1:75–78

    Google Scholar 

  30. Qian JH, Qian XD, Zhao WB (1986) Theory and practice of dynamic consolidation. Chin J Geotech Eng 6:26–30

    Google Scholar 

Download references

Acknowledgments

We thank the Universidad Autónoma de Aguascalientes (UAA) and Consejo Nacional de Ciencia y Tecnología (CONACYT) for their support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Estefanía Orenday-Tapia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this paper

Cite this paper

Orenday-Tapia, E.E., Pacheco-Martínez, J., Padilla-Ceniceros, R., Ánimas-Rivera, H., Ortiz-Lozano, J.Á., Gaxiola-Apodaca, D. (2019). Characterization of the Mechanical Properties of Ancient Masonry from a Non-destructive Method In Situ. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds) Structural Analysis of Historical Constructions. RILEM Bookseries, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-99441-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99441-3_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99440-6

  • Online ISBN: 978-3-319-99441-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics