Skip to main content

Formal Analysis of Network Motifs

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11095))

Included in the following conference series:

Abstract

A recurring set of small sub-networks have been identified as the building blocks of biological networks across diverse organisms. These network motifs have been associated with certain dynamical behaviors and define key modules that are important for understanding complex biological programs. Besides studying the properties of motifs in isolation, existing algorithms often evaluate the occurrence frequency of a specific motif in a given biological network compared to that in random networks of similar structure. However, it remains challenging to relate the structure of motifs to the observed and expected behavior of the larger network. Indeed, even the precise structure of these biological networks remains largely unknown. Previously, we developed a formal reasoning approach enabling the synthesis of biological networks capable of reproducing some experimentally observed behavior. Here, we extend this approach to allow reasoning about the requirement for specific network motifs as a way of explaining how these behaviors arise. We illustrate the approach by analyzing the motifs involved in sign-sensitive delay and pulse generation. We demonstrate the scalability and biological relevance of the approach by revealing the requirement for certain motifs in the network governing stem cell pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While, in general, the motif assignment \(\theta \) is not invertible, \(\theta ^{-1}(c)\) and \(\theta ^{-1}(c')\) can be defined for the interactions \((c,c',*) \in I_{\mathcal {A}, \theta , \mathcal {M}}\) and \((c,c',*) \in I^?_{\mathcal {A}, \theta , \mathcal {M}}\).

  2. 2.

    Depending on the exact implementation, the delay can be observed when the signal switches from active to inactive instead, but this variation of a sign-sensitive delay is not considered here.

References

  1. Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif counting and discovery by color coding. Bioinformatics 24(13), i241–i249 (2008)

    Article  Google Scholar 

  2. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  3. Amit, I., et al.: A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39(4), 503 (2007)

    Article  Google Scholar 

  4. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM (1983)

    Google Scholar 

  5. Barnat, J., Brim, L., Cerna, I., et al.: From simple regulatory motifs to parallel model checking of complex transcriptional networks. Pre-proceedings of Parallel and Distributed Methods in Verification (PDMC 2008), Budapest, pp. 83–96 (2008)

    Google Scholar 

  6. Chen, J., Hsu, W., Lee, M.L., Ng, S.K.: NeMoFinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 106–115. ACM (2006)

    Google Scholar 

  7. Dunn, S.J., Li, M.A., Carbognin, E., Smith, A.G., Martello, G.: A common molecular logic determines embryonic stem cell self-renewal and reprogramming. bioRxiv, p. 200501 (2017)

    Google Scholar 

  8. Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an essential transcription factor program for naïve pluripotency. Science 344(6188), 1156–1160 (2014)

    Article  Google Scholar 

  9. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  10. Ito, S., Ichinose, T., Shimakawa, M., Izumi, N., Hagihara, S., Yonezaki, N.: Formal analysis of gene networks using network motifs. In: Fernández-Chimeno, M., et al. (eds.) BIOSTEC 2013. CCIS, vol. 452, pp. 131–146. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44485-6_10

    Chapter  Google Scholar 

  11. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10(1), 318 (2009)

    Article  Google Scholar 

  12. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  13. Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.: QuateXelero: an accelerated exact network motif detection algorithm. PLoS One 8(7), e68073 (2013)

    Article  Google Scholar 

  14. Kugler, H., Dunn, S.J., Yordanov, B.: Formal analysis of network motifs. bioRxiv (2018)

    Google Scholar 

  15. Li, X., Stones, D.S., Wang, H., Deng, H., Liu, X., Wang, G.: NetMODE: network motif detection without nauty. PLoS One 7(12), e50093 (2012)

    Article  Google Scholar 

  16. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Nat. Acad. Sci. 100(21), 11980–11985 (2003)

    Article  Google Scholar 

  17. Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334(2), 197–204 (2003)

    Article  Google Scholar 

  18. McKay, B.: Practical graph isomorphism. Congr. Numerantium 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  19. Meira, L.A., Máximo, V.R., Fazenda, Á.L., Da Conceição, A.F.: acc-Motif: accelerated network motif detection. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 11(5), 853–862 (2014)

    Article  Google Scholar 

  20. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  21. Nichols, J., Smith, A.: Pluripotency in the embryo and in culture. Cold Spring Harb. Perspect. Biol. 4(8), a008128 (2012)

    Article  Google Scholar 

  22. Nurse, P.: Life, logic and information. Nature 454(7203), 424–426 (2008)

    Article  Google Scholar 

  23. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Article  Google Scholar 

  24. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  25. Reigl, M., Alon, U., Chklovskii, D.B.: Search for computational modules in the C. elegans brain. BMC Biol. 2(1), 25 (2004)

    Article  Google Scholar 

  26. Schreiber, F., Schwöbbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17), 3572–3574 (2005)

    Article  Google Scholar 

  27. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64 (2002)

    Article  Google Scholar 

  28. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  29. Tran, N.T.L., Mohan, S., Xu, Z., Huang, C.H.: Current innovations and future challenges of network motif detection. Brief. Bioinform. 16(3), 497–525 (2015)

    Article  Google Scholar 

  30. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)

    Article  Google Scholar 

  31. Wong, E., Baur, B., Quader, S., Huang, C.H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2011)

    Article  Google Scholar 

  32. Yeger-Lotem, E., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U.S.A. 101(16), 5934–5939 (2004)

    Article  Google Scholar 

  33. Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A method to identify and analyze biological programs through automated reasoning. NPJ Syst. Biol. Appl. 2(16010) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hillel Kugler or Boyan Yordanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kugler, H., Dunn, SJ., Yordanov, B. (2018). Formal Analysis of Network Motifs. In: Češka, M., Šafránek, D. (eds) Computational Methods in Systems Biology. CMSB 2018. Lecture Notes in Computer Science(), vol 11095. Springer, Cham. https://doi.org/10.1007/978-3-319-99429-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99429-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99428-4

  • Online ISBN: 978-3-319-99429-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics