Skip to main content

Modeling and Engineering Promoters with Pre-defined RNA Production Dynamics in Escherichia Coli

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2018)

Abstract

Recent developments in live-cell time-lapse microscopy and signal processing methods for single-cell, single-RNA detection now allow characterizing the in vivo dynamics of RNA production of Escherichia coli promoters at the single event level. This dynamics is mostly controlled at the promoter region, which can be engineered with single nucleotide precision. Based on these developments, we propose a new strategy to engineer genes with predefined transcription dynamics (mean and standard deviation of the distribution of RNA numbers of a cell population). For this, we use stochastic modelling followed by genetic engineering, to design synthetic promoters whose rate-limiting steps kinetics allow achieving a desired RNA production kinetics. We present an example where, from a pre-defined kinetics, a stochastic model is first designed, from which a promoter is selected based on its rate-limiting steps kinetics. Next, we engineer mutant promoters and select the one that best fits the intended distribution of RNA numbers in a cell population. As the modelling strategies and databases of models, genetic constructs, and information on these constructs kinetics improve, we expect our strategy to be able to accommodate a wide variety of pre-defined RNA production kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, D.L., Brewster, R.C., Phillips, R.: Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 1533–1537 (2014)

    Article  Google Scholar 

  2. Shih, M.-C., Gussin, G.: Mutations affecting two different steps in transcription initiation at the phage λ PRM promoter. Proc. Natl. Acad. Sci. USA 80, 496–500 (1983)

    Article  Google Scholar 

  3. Golding, I., Cox, E.C.: RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101(31), 11310–11315 (2004)

    Article  Google Scholar 

  4. Goncalves, N.S.M., Startceva, S., Palma, C.S.D., Bahrudeen, M.N.M., Oliveira, S.M.D., Ribeiro, A.S.: Temperature-dependence of the single-cell kinetics of transcription activation in Escherichia coli. Phys. Biol. 15(2), 026007 (2017)

    Article  Google Scholar 

  5. Liang, S., et al.: Activities of constitutive promoters in Escherichia coli. J. Mol. Biol. 292, 19–37 (1999)

    Article  Google Scholar 

  6. Ribeiro, A.S.: Kinetics of gene expression in live bacteria: from models to measurements, and back again. Can. J. Chem. 91(7), 487–494 (2013)

    Article  Google Scholar 

  7. Mäkelä, J., Lloyd-Price, J., Yli-Harja, O., Ribeiro, A.S.: Stochastic sequence-level model of coupled transcription and translation in prokaryotes. BMC Bioinform. 12, 121 (2011)

    Article  Google Scholar 

  8. Häkkinen, A., Tran, H., Yli-Harja, O., Ribeiro, A.S.: Effects of rate-limiting steps in transcription initiation on genetic filter motifs. PLoS ONE 8(8), e70439 (2013)

    Article  Google Scholar 

  9. Lloyd-Price, J., et al.: Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA Res. 23(3), 203–214 (2016)

    Article  Google Scholar 

  10. Peabody, D.S.: The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993)

    Google Scholar 

  11. Golding, I., Paulsson, J., Zawilski, S.M., Cox, E.C.: Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005)

    Article  Google Scholar 

  12. Peabody, D.S.: Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2. Mol. Gen. Genet. 254, 358–364 (1997)

    Article  Google Scholar 

  13. Fusco, D., et al.: Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13(2), 161–167 (2003)

    Article  Google Scholar 

  14. Ribeiro, A.S., Zhu, R., Kauffman, S.A.: A general modeling strategy for gene regulatory networks with stochastic dynamics. J. Comput. Biol. 13(9), 1630–1639 (2006)

    Article  MathSciNet  Google Scholar 

  15. Lloyd-Price, J., Gupta, A., Ribeiro, A.S.: SGNS2: a compartmentalized stochastic chemical kinetics simulator for dynamic cell populations. Bioinformatics 28, 3004–3005 (2012)

    Article  Google Scholar 

  16. Ribeiro, A.S., Häkkinen, A., Mannerström, H., Lloyd-Price, J., Yli-Harja, O.: Effects of the promoter open complex formation on gene expression dynamics. Phys. Rev. E 81(1), 011912 (2010)

    Article  Google Scholar 

  17. Rajala, T., Häkkinen, A., Healy, S., Yli-Harja, O., Ribeiro, A.S.: Effects of transcriptional pausing on gene expression dynamics. PLoS Comput. Biol. 6(3), e1000704 (2010)

    Article  MathSciNet  Google Scholar 

  18. Bahrudeen, M.N.M., Startceva, S., Ribeiro, A.S.: Effects of extrinsic noise are promoter kinetics dependent. In: The 9th International Conference on Bioinformatics and Biomedical Technology on Proceedings, ICBBT 2017, Lisbon, Portugal, pp. 44–47 (2017)

    Google Scholar 

  19. Häkkinen, A., Ribeiro, A.S.: Estimation of GFP-tagged RNA numbers from temporal fluorescence intensity data. Bioinformatics 31(1), 69–75 (2015)

    Article  Google Scholar 

  20. Häkkinen, A., Ribeiro, A.S.: Identifying rate-limiting steps in transcription from RNA production times in live cells. Bioinformatics 32(9), 1346–1352 (2016)

    Article  Google Scholar 

  21. Häkkinen, A., Tran, H., Ingalls, B., Ribeiro, A.S.: Effects of multimerization on the temporal variability of protein complex abundance. BMC Syst. Biol. 7(Suppl. 1), S3 (2013)

    Article  Google Scholar 

  22. Ribeiro, A.S.: Stochastic and delayed stochastic models of gene expression and regulation. Math. Biosci. 223(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  23. Oliveira, S.M.D., Häkkinen, A., Lloyd-Price, J., Tran, H., Kandavalli, V., Ribeiro, A.S.: Temperature-dependent model of multi-step transcription initiation in Escherichia coli based on live single-cell measurements. PLoS Comput. Biol. 12, e1005174 (2016)

    Article  Google Scholar 

  24. Mäkelä, J., Kandavalli, V., Ribeiro, A.S.: Rate-limiting steps in transcription dictate sensitivity to variability in cellular components. Sci. Rep. 7, 10588 (2017)

    Article  Google Scholar 

  25. Taniguchi, Y., Choi, P.J., Li, G.-W., et al.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010)

    Article  Google Scholar 

  26. Kandavalli, V.K., Tran, H., Ribeiro, A.S.: Effects of σ factor competition are promoter initiation kinetics dependent. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 1859, 1281–1288 (2016)

    Article  Google Scholar 

  27. Mitarai, N., Sneppen, K., Pedersen, S.: Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. J. Mol. Biol. 382, 236–245 (2008)

    Article  Google Scholar 

  28. Bremer, H., Dennis, P.P.: Modulation of Chemical composition and other parameters of the cell by growth rate. In: Neidhardt, F.C. (ed.) Escherichia coli and Salmonella, 2nd edn, pp. 1553–1569. ASM Press, Washington, DC (1996)

    Google Scholar 

  29. Kennel, D., Riezman, H.: Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114(1), 1–21 (1977)

    Article  Google Scholar 

  30. Cormack, B.P., Valdivia, R.H., Falkow, S.: FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1), 33–38 (1996)

    Article  Google Scholar 

  31. Saecker, R.M., Record, M.T., Dehaseth, P.L.: Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 (2011)

    Article  Google Scholar 

  32. Chamberlin, M.: The selectivity of transcription. Annu. Rev. Biochem. 43, 721–775 (1974)

    Article  Google Scholar 

  33. deHaseth, P.L., Zupancic, M.L., Record, M.T.: RNA polymerase promoter interactions: the comings and goings of RNA polymerase. J. Bacteriol. 180, 3019–3025 (1998)

    Google Scholar 

  34. Bernstein, J.A., Khodursky, A.B., Pei-Hsun, L., Lin-Chao, S., Cohen, S.N.: Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99, 9697–9702 (2002)

    Article  Google Scholar 

  35. Chong, S., Chen, C., Ge, H., Xie, X.S.: Mechanism of transcriptional bursting in bacteria. Cell 158, 314–326 (2014)

    Article  Google Scholar 

  36. McClure, W.R.: Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54, 171–204 (1985)

    Article  Google Scholar 

  37. Abhishekh, G., Lloyd-Price, J., Ribeiro, A.S.: In silico analysis of division times of Escherichia coli populations as a function of the partitioning scheme of non-functional proteins. Silico Biol. 12, 9–21 (2014)

    Google Scholar 

  38. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  39. Lutz, R., Bujard, H.: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I 2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997)

    Article  Google Scholar 

  40. Muthukrishnan, A.-B., Martikainen, A., Neeli-Venkata, R., Ribeiro, A.S.: n Vivo transcription kinetics of a synthetic gene uninvolved in stress-response pathways in stressed Escherichia coli Cells. PLoS ONE 9, e109005 (2014)

    Article  Google Scholar 

  41. Häkkinen, A., Muthukrishnan, A.B., Mora, A., Fonseca, J.M., Ribeiro, A.S.: Cell aging: a tool to study segregation and partitioning in division in cell lineages of Escherichia coli. Bioinformatics 29(13), 1708–1709 (2013)

    Article  Google Scholar 

  42. Tran, H., Oliveira, S.M.D., Goncalves, N.S.M., Ribeiro, A.S.: Kinetics of the cellular intake of a gene expression inducer at high concentrations. Mol. BioSyst. 11, 2579–2587 (2015)

    Article  Google Scholar 

  43. Häkkinen, A., Ribeiro, A.S.: Characterizing rate-limiting steps in transcription from RNA production times in live cells. Bioinformatics 32(9), 1346–1352 (2016)

    Article  Google Scholar 

  44. Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934)

    Article  Google Scholar 

  45. Carpenter, J., Bithell, J.: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19(9), 1141–1164 (2000)

    Article  Google Scholar 

  46. Schleif, R.: Regulation of the L-arabinose operon of Escherichia coli. Trends Gen. 16(12), 559–565 (2000)

    Article  Google Scholar 

  47. Lloyd-Price, J., Tran, H., Ribeiro, A.S.: Dynamics of small genetic circuits subject to stochastic partitioning in cell division. J. Theor. Biol. 356, 11–19 (2014)

    Article  Google Scholar 

  48. Mannerström, H., Yli-Harja, O., Ribeiro, A.S.: Inference of kinetic parameters of delayed stochastic models of gene expression using a Markov chain approximation. EURASIP J. Bioinform. Syst. Biol. 2011(1), 572876 (2011)

    Article  Google Scholar 

  49. Oliveira, S.M.D., et al.: Single-cell kinetics of the repressilator when implemented in a single-copy plasmid. Mol. BioSyst. 11, 1939–1945 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Work supported by Academy of Finland (295027 and 305342 to ASR), Jane and Aatos Erkko Foundation (610536 to ASR), Finnish Academy of Science and Letters (SO), TUT President Ph.D. grants (MB, SS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre S. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, S.M.D., Bahrudeen, M.N.M., Startceva, S., Kandavalli, V., Ribeiro, A.S. (2018). Modeling and Engineering Promoters with Pre-defined RNA Production Dynamics in Escherichia Coli. In: Češka, M., Šafránek, D. (eds) Computational Methods in Systems Biology. CMSB 2018. Lecture Notes in Computer Science(), vol 11095. Springer, Cham. https://doi.org/10.1007/978-3-319-99429-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99429-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99428-4

  • Online ISBN: 978-3-319-99429-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics