Skip to main content

Nitrogen, Phosphorus and Organic Carbon in the Saudi Arabian Red Sea Coastal Waters: Behaviour and Human Impact

  • Chapter
  • First Online:
Oceanographic and Biological Aspects of the Red Sea

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

The Red Sea is an oligotrophic marginal sea where the main source of nitrogen and phosphorus is the Indian Ocean water flowing through the Bab al Mandeb entrance in the south. Therefore, the nitrogen and phosphorus concentrations are expected to decrease northward. External sources resulting from urban activities enhance the level of phosphorus, nitrogen and carbon in coastal waters around major cities along the Red Sea. We utilized the results of dissolved inorganic phosphorus (reactive phosphate), dissolved inorganic nitrogen (nitrate, nitrite and ammonium) and organic carbon (dissolved organic carbon (DOC) and particulate organic carbon (POC)) along the coast of Jeddah in the eastern Red Sea, in order to understand the distribution, sources, and biogeochemical processes that control their levels in sea water. Moreover, the results were used to calculate the anthropogenic flux and contribution to the total budget of the Red Sea. The spatial distribution patterns showed very high concentrations of nitrogen, phosphorus and organic carbon in the water at the southern coast of Jeddah in comparison to the northern coast. Most of the wastewater (>300,000 m3 per day) of the city is discharged at this part of the coast. The quantity is beyond the nominal treatment capacity of the existing wastewater treatment plants, resulting in poor treatment efficiency. Further evidence of the importance of sewage discharges was obtained using salinity variations. The salinity was remarkably low at these locations and the projections of salinity against nitrogen, phosphorus and organic carbon revealed significant negative correlations. The seasonal distribution of DOC and POC reflected the seasonality of the primary productivity, showing higher values in late spring. POC showed a substantial proportion, accounting for up to 29% of total organic carbon. Ammonium was the major component in autumn, representing about 60% of the total inorganic nitrogen (TIN), while in spring nitrate became the principal component, constituting approximately 62% of the TIN. The application of various techniques revealed that nitrogen was the potential limiting element. Direct measurements and calculations indicated that the daily production of total nitrogen and phosphorus associated with sewage discharges into Jeddah coastal waters is about 21261 and 3360 kg, respectively. The inorganic forms of nitrogen and phosphorus represent 43 and 45% of the total nitrogen and phosphorus introduced into the area. Anthropogenic nitrogen and phosphorus sources at this part of the Red Sea coast represent about 0.9 and 9.9% of the deficit of the two elements through the Red Sea/Indian Ocean water exchange process at the Strait of Bab al Mandab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Farawati R (2010) Environmental conditions of the coastal waters of Southern Corniche, Jeddah, eastern Red Sea: Physico-chemical approach. Aust J Basic Appl Sci 4:3324–3337

    Google Scholar 

  • Al-Farawati R, Al-Maradni A, Niaz R (2008a) Chemical characteristics (nutrients, fecal sterols and polyaromatic hydrocarbons) of the surface waters for Sharm Obhur, Jeddah, eastern coast of the Red Sea. J King Abdulaziz Univ Mar Sci 19:95–119. https://doi.org/10.4197/mar.19-1.7

    Article  Google Scholar 

  • Al-Farawati R, El Maradni A, Basaham A, El Sayed M (2008b) Reclaimed municipal wastewater used for the irrigation of green areas in Jeddah: 1—chemical characteristics. J King Abdulaziz Univ Mar Sci 19:121–146

    Article  Google Scholar 

  • Al-Farawati R, El Sayed MA, Gazaz MO (2010) Dissolved and particulate organic carbon in the coastal water of Jeddah, eastern Red Sea. J Egypt Acad Soc Environ Dev 10:61–77

    Google Scholar 

  • Al-Farawati R, Gazzaz M, El Sayed M, El-Maradny A (2011) Temporal and spatial distribution of dissolved Cu, Ni and Zn in the coastal waters of Jeddah, eastern Red Sea. Arab J Geosci 4:1229–1238. https://doi.org/10.1007/s12517-010-0137-y

    Article  Google Scholar 

  • Aljoufie M, Tiwari A (2015) Climate change adaptions for urban water infrastructure in Jeddah, Kingdom of Saudi Arabia. J Sustain Dev 8:52. https://doi.org/10.5539/jsd.v8n3p52

    Article  Google Scholar 

  • Almazroui M, Islam MN, Jones PD, Athar H, Rahman MA (2012) Recent climate change in the Arabian Peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos Res 111:29–45. https://doi.org/10.1016/j.atmosres.2012.02.013

    Article  Google Scholar 

  • Alonso-Hernández CM, Garcia-Moya A, Tolosa I, Diaz-Asencio C-AJ, Morera-Gomez Y, Fanelli E (2017) Tracing organic matter sources in a tropical lagoon of the Caribbean Sea. Cont Shelf Res 148:53–63

    Article  Google Scholar 

  • Aminot A, El-Sayed MA, Kerouel R (1990a) Fate of natural and anthropogenic dissolved organic carbon in the macrotidal Elorn estuary (France). Mar Chem 29:255–275. https://doi.org/10.1016/0304-4203(90)90017-7

    Article  Google Scholar 

  • Aminot A, Guillaud JF, Le Guellec AM (1990b) Suivi à long terme des apports des matières organiques et nutritives par les effluents de Morlaix. Rapport IFREMER, DERO. 90-30. Brest, France, p 42

    Google Scholar 

  • Aminot A, Kérouel R (2004) Dissolved organic carbon, nitrogen and phosphorus in the N-E Atlantic and the N-W Mediterranean with particular reference to non-refractory fractions and degradation. Deep Sea Res Part I Oceanogr Res Pap 51:1975–1999. https://doi.org/10.1016/j.dsr.2004.07.016

    Article  Google Scholar 

  • Basaham AS (1998) Distribution and behaviour of some heavy metals in the surface sediments of Al-Arbaeen Lagoon, Jeddah, Red Sea coast. J King Abdulaziz Univ Mar Sci 10:59–71

    Google Scholar 

  • Basaham AS, Rifaat AE, El-Mamoney MH, El Sayed MA (2009) Re-evaluation of the impact of sewage disposal on coastal sediments of the Southern Corniche, Jeddah, Saudi Arabia. J King Abdulaziz Univ Mar Sci 20:109–126

    Article  Google Scholar 

  • Béthoux JP (1988) Red Sea geochemical budgets and exchanges with the Indian Ocean. Mar Chem 24:83–92. https://doi.org/10.1016/0304-4203(88)90007-2

    Article  Google Scholar 

  • Béthoux JP, Morin P, Ruiz-Pino DP (2002) Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep Sea Res Part II Top Stud Oceanogr 49:2007–2016. https://doi.org/10.1016/S0967-0645(02)00024-3

    Article  Google Scholar 

  • Boehm FR, Sandrini-Neto L, Moens T, da Cunha LP (2016) Sewage input reduces the consumption of Rhizophora mangle propagules by crabs in a subtropical mangrove system. Mar Environ Res 122:23–32. https://doi.org/10.1016/j.marenvres.2016.09.003

    Article  Google Scholar 

  • Bøsrheim KY, Myklestad SM (1997) Dynamics of DOC in the Norwegian Sea inferred from monthly profiles collected during 3 years at 66°N, 2°E. Deep Sea Res Part I Oceanogr Res Pap 44:593–601. https://doi.org/10.1016/S0967-0637(96)00106-9

    Article  Google Scholar 

  • Burford MA, Revill AT, Smith J, Clementson L (2012) Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks. Mar Pollut Bull 64:2671–2680. https://doi.org/10.1016/j.marpolbul.2012.10.008

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369. https://doi.org/10.4319/lo.1977.22.2.0361

    Article  Google Scholar 

  • Carlson RE, Simpson J (1996) A Coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society

    Google Scholar 

  • Chester R, Jickells TD (2012) Marine geochemistry, 3rd edn. Wiley/Blackwell, West Sussex, UK, p 420

    Book  Google Scholar 

  • Codispoti LA (1997) The limits to growth. Nature 387:237–238

    Article  Google Scholar 

  • Cravo A, Fernandes D, Damião T, Pereira C, Reis MP (2015) Determining the footprint of sewage discharges in a coastal lagoon in south-western Europe. Mar Pollut Bull 96:197–209. https://doi.org/10.1016/j.marpolbul.2015.05.029

    Article  Google Scholar 

  • Cugier P (1999) Modélisation du devenir à moyen terme dans l’eau et le sédiment des éléments majeurs (N, P, Si, O) rejetés par la Seine en baie de Seine. Universite de Caen, France, Thesis, p 250

    Google Scholar 

  • Dafner EV, Boscolo R, Bryden HL (2003) The N:Si: P molar ratio in the Strait of Gibraltar. Geophys Res Lett 30(10):1506. https://doi.org/10.1029/2002GL016274

    Article  Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120. https://doi.org/10.1016/S0304-4203(03)00105-1

    Article  Google Scholar 

  • Dortch Q, Whitledge TE (1992) Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont Shelf Res 12:1293–1309. https://doi.org/10.1016/0278-4343(92)90065-R

    Article  Google Scholar 

  • Edmond JM, Boyle EA, Grant B, Stallard RF (1981) The chemical mass balance in the Amazon plume I: The nutrients. Deep-Sea Res 28:1339–1374

    Article  Google Scholar 

  • El-Maradny A, Turki AJ, Shaban YA, Alqubati AM (2016) Levels and probable sources of hydrocarbons in the sediments of Jeddah coast, Red Sea, Saudi Arabia. J Chem Soc Pakistan 38:369–378

    Google Scholar 

  • El-Rayis OA, Moammar MO (1998) Environmental conditions of two Red Sea coastal lagoons in Jeddah: 1. Hydrochemistry. J King Abdulaziz Univ Mar Sci 9:31–47

    Article  Google Scholar 

  • El-Sayed MA (1988) Contribution to the study of the geochemical behaviour of some trace elements (Cu, Fe, Mn and Zn) and organic matter in the estuarine environment. Thesis, University of West Brittany, Brest, France, Case of the Loire Estuary and the Rode of Brest, p 471

    Google Scholar 

  • El-Sayed MA (2002a) Nitrogen and phosphorus in the effluent of a sewage treatment station on the eastern Red Sea coast: Daily cycle, flux and impact on the coastal area. Int J Environ Stud 59:73–94. https://doi.org/10.1080/00207230290011535

  • El Sayed MA (2002b) Distribution and behaviour of dissolved species of nitrogen and phosphorus in two coastal Red Sea lagoons receiving domestic sewage. J King Abdulaziz Univ Mar Sci 13:47–73

    Article  Google Scholar 

  • El Sayed MA (2002c) Factors controlling the distribution and behaviour of organic carbon and trace metals in a heavily sewage polluted coastal environment. J King Abdulaziz Univ Mar Sci 13:21–46

    Article  Google Scholar 

  • El Sayed MA, Al Farawati RK, El Maradny AA, Shaban YA, Rifaat AE (2015) Environmental status and nutrients and dissolved organic carbon budget of two Saudi Arabian Red Sea coastal inlets: A snapshot statement. Environ Earth Sci 74:7755–7767. https://doi.org/10.1007/s12665-013-2557-y

    Article  Google Scholar 

  • El Sayed MA, El-Maradny AA, Al Farawati K, Shaban A (2011) Evaluation of the adequacy of a rehabilitation programme, implemented in two Red Sea coastal lagoons, using the hydrological characteristics of surface water. J King Abdulaziz Univ Sci 22:69–108. https://doi.org/10.4197/Mar

    Article  Google Scholar 

  • El Sayed MA, Niaz G (1999) Study of sewage pollution along the southern coast of Jeddah: Study of some organic and inorganic pollutants. King Abdulaziz University Scientific Research Council, Jeddah

    Google Scholar 

  • Eyre B, Balls P (1999) A comparative study of nutrient processes along the salinity gradient of tropical and temperate estuaries. Estuaries Coasts 22:313–326

    Article  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Article  Google Scholar 

  • Fawcett SE, Ward BB, Lomas MW, Sigman DM (2015) Vertical decoupling of nitrate assimilation and nitrification in the Sargasso Sea. Deep-Sea Res Part I Oceanogr Res Pap 103:64–72. https://doi.org/10.1016/j.dsr.2015.05.004

    Article  Google Scholar 

  • Fenchel T, King G, Blackburn H (2012) Bacterial biogeochemistry: The ecophysiology of mineral cycling. Academic Press/Elsevier, San Diego, p 307

    Google Scholar 

  • Fisher TR, Hagy JD, Rochelle-Newall E (1998) Dissolved and particulate organic carbon in Chesapeake Bay. Estuaries 21:215–229. https://doi.org/10.2307/1352470

    Article  Google Scholar 

  • Fisher TR, Peele RR, Ammerman EW, Harding LWJ (1992) Nutrient limitation of phytoplankton in Chesapeake Bay. Mar Ecol Prog Ser 82:51–63

    Article  Google Scholar 

  • Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio. Limnol Oceanogr 32:1239–1252. https://doi.org/10.4319/lo.1987.32.6.1239

    Article  Google Scholar 

  • Grasshoff K (1969) Chemical observations in the Red Sea and the inner Gulf of Aden during the International Indian Ocean Expedition 1964/65. Suppl. to Grasshoff K, Zur Chemie des Roten Meeres und des Inneren Golfs von Aden nach Beobachtungen von F.S. “Meteor” während der Indischen Ozean Expedition 1964/65. Meteor Forschungsergebnisse, Dtsch. Forschungsgemeinschaft, Deutsche Forschungsgemeinschaft, Reihe A Allgemeines, Physik und Chemie des Meeres, Gebrüder Bornträger, Berlin, Stuttgart, A6, pp 1–76. https://doi.org/10.1594/pangaea.603890

  • Gray JS, Wu RS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238:249–279

    Article  Google Scholar 

  • Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Global Biogeochem Cycles 12:443–453. https://doi.org/10.1029/98GB01928

    Article  Google Scholar 

  • Hansell DA, Carlson CA, Amon RMW (2002) Biogeochemistry of marine dissolved organic matter. Academic Press, New York

    Google Scholar 

  • Harrison WG (1992) Regeneration of nutrients. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, US, Boston, MA, pp 385–407

    Chapter  Google Scholar 

  • Hase C, Al-Qutob M, Dubinsky Z, Ibrahim EA, Lazar B, Stambler N, Tilzer MM (2006) A system in balance?—implications of deep vertical mixing for the nitrogen budget in the northern Red Sea, including the Gulf of Aqaba (Eilat). Biogeosci Discuss 3:383–408

    Article  Google Scholar 

  • Hinrichsen D (1998) Coastal waters of the world: Trends, threats, and strategies. Island Press, Washington, DC, p 275

    Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Ann Rev Ecol Syst 19:89–110. https://doi.org/10.1146/annurev.es.19.110188.000513

    Article  Google Scholar 

  • Justić D, Rabalais NN, Turner RE, Dortch Q (1995) Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar Coast Shelf Sci 40:339–356. https://doi.org/10.1016/S0272-7714(05)80014-9

    Article  Google Scholar 

  • Kaiser D, Konovalov S, Schulz-Bull DE, Waniek JJ (2017) Organic matter along longitudinal and vertical gradients in the Black Sea. Deep Res Part I Oceanogr Res Pap. https://doi.org/10.1016/j.dsr.2017.09.006

    Article  Google Scholar 

  • Karbe L, Lange J (1981) The chemical environment. In: Karbe L, Theil H, Weikert H, Mill AJB (eds) Mining metalliferous sediments from the Atlantic II Deep, Red Sea: pre-mining environmental conditions and evaluation of the risk to the environment. Environmental impact study presented to Saudi-Sudanese Red Sea Joint Commission, Hamburg, pp 75–99

    Google Scholar 

  • Karsh KL, Trull TW, Sigman DM, Thompson PA, Granger J (2014) The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation. Geochim Cosmochim Acta 132:391–412. https://doi.org/10.1016/j.gca.2013.09.030

    Article  Google Scholar 

  • Kaul LW, Froelich PN (1984) Modeling estuarine nutrient geochemistry in a simple system. Geochim Cosmochim Acta 48:1417–1433. https://doi.org/10.1016/0016-7037(84)90399-5

    Article  Google Scholar 

  • Krom MD, Kress N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36:424–432. https://doi.org/10.4319/lo.1991.36.3.0424

    Article  Google Scholar 

  • Lane RR, Day JW, Justic D, Reyes E, Marx B, Day JN, Hyfield E (2004) Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted through coastal wetlands to the Gulf of Mexico. Estuar Coast Shelf Sci 60:1–10. https://doi.org/10.1016/j.ecss.2003.11.015

    Article  Google Scholar 

  • Li R, Liu S, Zhang G, Ren J (2013) Biogeochemistry of nutrients in an estuary affected by human activities: the Wanquan River estuary, eastern Hainan Island, China. Cont Shelf Res 57:18–31. https://doi.org/10.1016/j.csr.2012.02.013

    Article  Google Scholar 

  • Libes SM (2009) Introduction to marine biogeochemistry, 2nd edn. Academic Press, Amsterdam, p 928

    Google Scholar 

  • Maciejewska A, Pempkowiak J (2014) DOC and POC in the water column of the southern Baltic. Part I. Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter. Oceanologia 56(3):523–548. https://doi.org/10.5697/oc.55-3.523

    Article  Google Scholar 

  • Maciejewska A, Pempkowiak J (2015) DOC and POC in the southern Baltic Sea. Part II—Evaluation of factors affecting organic matter concentrations using multivariate statistical methods. Oceanologia 57:168–176. https://doi.org/10.1016/j.oceano.2014.11.003

    Article  Google Scholar 

  • Mai-Thi N-N, St-Onge G, Tremblay L (2017) Contrasting fates of organic matter in locations having different organic matter inputs and bottom water O2 concentrations. Estuar Coast Shelf Sci 198:63–72. https://doi.org/10.1016/j.ecss.2017.08.044

    Article  Google Scholar 

  • Mantoura RFC, Woodward EMS (1983) Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: Chemical and geochemical implications. Geochim Cosmochim Acta 47:1293–1309. https://doi.org/10.1016/0016-7037(83)90069-8

    Article  Google Scholar 

  • Markogianni V, Varkitzi I, Pagou K, Dimitriou E (2017) Nutrient flows and related impacts between a Mediterranean river and the associated coastal area. Cont Shelf Res 134:1–14. https://doi.org/10.1016/j.csr.2016.12.014

    Article  Google Scholar 

  • Martin J-M, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:173–206. https://doi.org/10.1016/0304-4203(79)90039-2

    Article  Google Scholar 

  • Mohamed KN, Amil R (2015) Nutrients enrichment experiment on seawater samples at Pulau Perhentian, Terengganu. Procedia Environ Sci 30:262–267. https://doi.org/10.1016/j.proenv.2015.10.047

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Ann Rev 8:73–202

    Google Scholar 

  • Moutin T, Raimbault P (2002) Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Syst 33:273–288. https://doi.org/10.1016/S0924-7963(02)00062-3

    Article  Google Scholar 

  • Naqvi SWA, Hansen HP, Kureishy TW (1986) Nutrient uptake and regeneration ratios in the Red Sea with reference to the nutrient budgets. Oceanol Acta 9:271–275

    Google Scholar 

  • Nedwell DB, Dong LF, Sage A, Underwood GJC (2002) Variations of the nutrients loads to the mainland U.K. estuaries: Correlation with catchment areas, urbanization and coastal eutrophication. Estuar Coast Shelf Sci 54:951–970. https://doi.org/10.1006/ecss.2001.0867

    Article  Google Scholar 

  • Neill M (2005) A method to determine which nutrient is limiting for plant growth in estuarine waters—at any salinity. Mar Pollut Bull 50:945–955. https://doi.org/10.1016/j.marpolbul.2005.04.002

    Article  Google Scholar 

  • Owen NJP, Rees AP, Woodward EMS, Mantoura RFC (1989) Owens, 1989 size-fractionated primary production and nitrogen assimilation in the northwest Mediterranean Sea during January 1989. Water Pollut Res Bull 13:126–135

    Google Scholar 

  • Papaud A, Poisson A (1986) Distribution of dissolved CO2 in the Red Sea and correlations with other geochemical tracers. J Mar Res 44:385–402. https://doi.org/10.1357/002224086788405347

    Article  Google Scholar 

  • Pernetta JC, Milliman JD (1995) Land-ocean interactions in the coastal zone: implementation plan. International Geosphere-Biosphere Programme: A Study of Global Change of the International Council of Scientific Unions (ICSU), Stockholm, 215 pp

    Google Scholar 

  • PERSGA (2010) The status of coral reefs in the Red Sea and Gulf of Aden: 2009. PERSGA Technical Series Number 16, PERSGA, Jeddah, 105 pp

    Google Scholar 

  • Poisson A, Morcos S, Souvermezoglou E, Papaud A, Ivanoff A (1984) Some aspects of biogeochemical cycles in the Red Sea with special reference to new observations made in summer 1982. Deep-Sea Res Part A Oceanogr Res Pap 31:707–718

    Article  Google Scholar 

  • Rada JPA, Duarte AC, Pato P, Cachada A, Carreira RS (2016) Sewage contamination of sediments from two Portuguese Atlantic coastal systems, revealed by fecal sterols. Mar Pollut Bul 103:319–324

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: James Johnstone Memorial Volume. Liverpool University Press, pp 176–192

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):205–221

    Google Scholar 

  • Redfield AC, Ketcham BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill HN (ed) The Sea. Interscience, New York, pp 26–77

    Google Scholar 

  • Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim Cosmochim Acta 40:831–845. https://doi.org/10.1016/0016-7037(76)90035-1

    Article  Google Scholar 

  • Sommer S, Gier J, Treude T Lomnitz U, Dengler M, Cardich J, Dale AW (2016) Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes. Deep Sea Res Part I Oceanogr Res Pap 112:113–122. https://doi.org/10.1016/j.dsr.2016.03.001

    Article  Google Scholar 

  • Souza AC, Kim I-N, Gardner WS (2014) Dinitrogen, oxygen, and nutrient fluxes at the sediment–water interface and bottom water physical mixing on the eastern Chukchi Sea shelf. Deep-Sea Res Part II Top Stud Oceanogr 102:77–83. https://doi.org/10.1016/j.dsr2.2014.01.002

    Article  Google Scholar 

  • Szymczycha B, Winogradow A, Kuliński K, Koziorowska K, Pempkowiak J (2017) Diurnal and seasonal DOC and POC variability in the land-locked sea. Oceanologia 59:379–388. https://doi.org/10.1016/j.oceano.2017.03.008

    Article  Google Scholar 

  • Taylor MC, Ghazi S (1995) Jeddah environmental study. MEPA, Jeddah, p 59

    Google Scholar 

  • Toggweiler JR (1999) Oceanography: an ultimate limiting nutrient. Nature 400:511–512

    Article  Google Scholar 

  • Turki AJ (2006) Concentration of some heavy metals in surface sediments of a coastal Red Sea lagoon receiving domestic sewage. J Egypt Acad Soc Environ Dev D—environmental Stud 7:21–40

    Google Scholar 

  • Turki AJ, El Sayed MA, Basaham AS, Al-Farawati R (2002) Study on the distribution, dispersion and mode association of some organic and inorganic pollutants in a coastal lagoon receiving sewage disposal. King Abdulaziz University Scientific Research Council, Jeddah

    Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  Google Scholar 

  • Valiela I (2005) Marine Ecological Processes, 2nd edn. Springer, New York, p 696

    Google Scholar 

  • Van Oostende N, Fawcett SE, Marconi D, Lueders-Dumont J, Sabadel AJM, Woodward EMS, Jönsson BF, Sigman DM, Ward BB (2017) Variation of summer phytoplankton community composition and its relationship to nitrate and regenerated nitrogen assimilation across the North Atlantic Ocean. Deep-Sea Res Part I Oceanogr Res Pap 121:79–94. https://doi.org/10.1016/j.dsr.2016.12.012

    Article  Google Scholar 

  • Videau C (1995) Facteurs nutritifs limitant la production primaire en Baie de Seine. Report, Universite de Bretangne Occidentale, Brest, France, 58 pp

    Google Scholar 

  • Wada E, Hattori A (1991) Nitrogen in the sea: Forms, abundances, and rate processes. CRC Press, Boca Raton, FL, p 208

    Google Scholar 

  • Wang B, Wang X, Zhan R (2003) Nutrient conditions in the Yellow Sea and the East China Sea. Estuar Coast Shelf Sci 58:127–136. https://doi.org/10.1016/S0272-7714(03)00067-2

    Article  Google Scholar 

  • Yadav K, Sarma VVSS, Rao DB, Kumar MD (2016) Influence of atmospheric dry deposition of inorganic nutrients on phytoplankton biomass in the coastal Bay of Bengal. Mar Chem 187:25–34. https://doi.org/10.1016/j.marchem.2016.10.004

    Article  Google Scholar 

  • Zahran MA, Gilbert FS (2010) Climate—vegetation: Afro-Asian Mediterranean and Red Sea coastal lands. Springer, 324 pp

    Google Scholar 

  • Zhou Y, Zhang Y, Li F, Tan L, Wang J (2017) Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea. Sci Total Environ 574:499–508. https://doi.org/10.1016/j.scitotenv.2016.09.092

    Article  Google Scholar 

  • Zvalinsky VI, Nedashkovsky AP, Sagalayev SG, Tishchenko PJ, Shvetsova MG (2005) Nutrients and primary production in the estuary of the Razdol’naya River (Amur Bay, Sea of Japan). Russ J Mar Biol 31:91–101. https://doi.org/10.1007/s11179-005-0049-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research, King Abdulaziz University for financial support through many projects which has allowed us to present the current work. The authors also greatly appreciate considerable logistical support from the Saudi Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwan Al-Farawati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Farawati, R., El Sayed, M.A.K., Rasul, N.M.A. (2019). Nitrogen, Phosphorus and Organic Carbon in the Saudi Arabian Red Sea Coastal Waters: Behaviour and Human Impact. In: Rasul, N., Stewart, I. (eds) Oceanographic and Biological Aspects of the Red Sea. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-99417-8_5

Download citation

Publish with us

Policies and ethics