Skip to main content

Copepoda—Their Status and Ecology in the Red Sea

  • Chapter
  • First Online:
Oceanographic and Biological Aspects of the Red Sea

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

The subclass Copepoda is an important driving force in linking the lower trophic to higher trophic levels in aquatic ecosystems. Despite their ecological importance in marine waters, very little work has been done along the Red Sea since the early 19th century. Until now, about 276 species from 76 genera, 55 families, and 6 orders of copepods have been recorded in the Red Sea. This chapter discusses the diversity, distribution and ecology of the Red Sea copepods, which show an increasing gradient of species richness and biomass from north to south. Moreover, the standing stock of zooplankton in the southern Red Sea is higher than the central and northern parts. The majority of copepods recorded are during the winter season. The epipelagic zone in the Red Sea is usually dominated by small-sized genera, especially Acrocalanus, Calocalanus, Clausocalanus, Corycaeus, Ctenocalanus, Macrosetella, Oithona, Oncaea, Paracalanus, Paraoithona and Parvocalanus. With increasing depths, microcopepods belonging to the family Oncaeidae become numerically more important than the calanoid copepods. A special focus has been provided with reference to the effect of UV-B radiation on their biology, which shows that the maximum mortality rates of copepods under ambient solar radiation levels average a five-fold increase over the average mortality in the dark. The chapter also discusses the symbiotic and parasitic relationship of copepods with other organisms, such as corals and coral-reef fishes. A preliminary report shows that symbiotic copepods attain a high diversity from scleractinian coral genera, such as Pocillopora sp., Acropora sp., Stylophora sp., Favia sp. and Fungia sp. This chapter provides a baseline introduction on copepods and possible research in different aspects of their biology, which may provide a new step in copepod research in the Red Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamer MA, El-Sherbiny MM, Gab-Alla AAFA, Kotb MMA (2006) Studies on the ecology of zooplankton standing crop of Sharm El-Maiya Bay, Sharm El-Sheikh, northern Red Sea. Egypt Catrina 1(1):73–80

    Google Scholar 

  • Abd El-Rahman NS (1999) Check-list of the crustacean copepods in the Gulf of Aqaba. Egypt J Aquat Fish 3:35–54

    Article  Google Scholar 

  • Ahyong ST, Lowry JK, Alonso M, Bamber RN, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC, Svavarsson J (2011) Subphylum Crustacea Brünnich, 1772. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:168–173

    Google Scholar 

  • Al-Aidaroos AM, El-Sherbiny MM, Satheesh S, Mantha G, Agustī S, Carreja B, Duarte CM (2014) High mortality of Red Sea zooplankton under ambient solar radiation. PLoS ONE 9(10):e108778. https://doi.org/10.1371/journal.pone.0108778

    Article  Google Scholar 

  • Al-Aidaroos AM, El-Sherbiny MM, Satheesh S, Mantha G, Agustī S, Carreja B, Duarte CM (2015) Strong sensitivity of Red Sea zooplankton to UV-B radiation. Estuar Coasts 38(3):846–853

    Article  Google Scholar 

  • Al-Aidaroos AM, El-Sherbiny MM, Mantha G (2016a) Spatial heterogeneity of zooplankton abundance and diversity in the Saudi coastal waters of the southern Red Sea. Indian J Geo-Mar Sci 45(1):70–85

    Google Scholar 

  • Al-Aidaroos AM, Salama AJ, El-Sherbiny MM (2016b) New record and redescription of Calanopia thompsoni A. Scott, 1909 (Copepoda, Calanoida, Pontellidae) from the Red Sea, with notes on the taxonomic status of C. parathompsoni Gaudy, 1969 and a key to species. ZooKeys 552:17–32

    Article  Google Scholar 

  • Almeida Prado-Por MS (1983) The diversity and dynamics of Calanoida (Copepoda) in the northern Gulf of Elat (Aqaba), Red Sea. Oceanol Acta 6:139–145

    Google Scholar 

  • Almeida Prado-Por MS (1984) Two new sympatric species of Ctenocalanus (Calanoida) from the Gulf of Elat (Aqaba). Crustaceana 7:85–90

    Google Scholar 

  • Almeida Prado-Por MS (1985) Distribution of Calanoida Copepoda along the Gulf of Elat (Aqaba). Rap Comm Int Mer Médit 29:249–252

    Google Scholar 

  • Almeida Prado-Por MS (1990) A diel cycle of vertical distribution of the Calanoida (Crustacea: Copepoda) in the northern Gulf of Aqaba (Elat). Bull Inst Oceanogr Monaco 7:109–116

    Google Scholar 

  • Al-Najjar T (2002) Pelagic copepod diversity in the Gulf of Aqaba (Red Sea). Lebanese Sci J 3(1):3–16

    Google Scholar 

  • Al-Najjar T (2005) Seasonal and spatial variations in mesozooplankton biomass in the northern Gulf of Aqaba. Zool Middle East 34(1):87–92

    Article  Google Scholar 

  • Al-Najjar T, El-Sherbiny MM (2008) Spatial and seasonal variations in biomass and size structure of zooplankton in coastal waters of the Gulf of Aqaba. Jordan J Biol Sci 1(2):55–59

    Google Scholar 

  • Al-Najjar T, Rasheed M (2005) Zooplankton biomass in the most northern tip of the Gulf of Aqaba, a case study. Lebanese Sci J 6(2):3–10

    Google Scholar 

  • Al-Najjar T, Badran M, Zibdeh M (2002) Seasonal cycle of surface zooplankton biomass in relation to the chlorophyll-a in the Gulf of Aqaba, Red Sea. Abhath Al-Yarmouk Basic Sci Eng 12(1):109–118

    Google Scholar 

  • Arnemo R (1965) Limnological studies in Hyttodamman. 3—Zooplankton. Inst Freshwater Res, Drottinghon, Rep No 46

    Google Scholar 

  • Badran MI, Rasheed M, Manasrah R et al (2005) Nutrient flux fuels the summer primary productivity in the oligotrophic waters of the Gulf of Aqaba. Red Sea. Oceanologia 47(1):47–60

    Google Scholar 

  • Beckmann W (1984) Mesozooplankton distribution on a transect from the Gulf of Aden to the central Red Sea during the winter monsoon. Oceanol Acta 7:87–102

    Google Scholar 

  • Böttger R (1987) The vertical distribution of microzooplankton and small mesozooplankton in the central Red Sea. Biol Oceanogr 4:383–402

    Google Scholar 

  • Böttger-Schnack R (1988) Observations on the taxonomic composition and vertical distribution of cyclopoid copepods in the central Red Sea. Hydrobiologia 167(168):311–318

    Article  Google Scholar 

  • Böttger-Schnack R (1989) Body length of female Macrosetella gracilis (Copepoda: Harpacticoida) from various depth zones in the Red Sea. Mar Ecol Prog Ser 52:33–37

    Article  Google Scholar 

  • Böttger-Schnack R (1990a) Community structure and vertical distribution of cyclopoid copepods in the Red Sea. 1. Central Red Sea, autumn 1980. Mar Biol 106:473–485

    Article  Google Scholar 

  • Böttger-Schnack R (1990b) Community structure and vertical distribution of cyclopoid copepods in the Red Sea. 2. Aspects of seasonal and regional differences. Mar Biol 106:487–501

    Article  Google Scholar 

  • Böttger-Schnack R (1991) Seasonal changes in the vertical distribution and size structure of Macrosetella gracilis populations (Copepoda: Harpacticoida) in the Red Sea. Bull Plankt Soc Japan 79:309–320

    Google Scholar 

  • Böttger-Schnack R (1992) Community structure and vertical distribution of cyclopoid and poecilostomatoid copepods in the Red Sea. III. Re-evaluation for separating a new species of Oncaea. Mar Ecol Prog Ser 80:301–304

    Article  Google Scholar 

  • Böttger-Schnack R (1994) The microcopepod fauna in the eastern Mediterranean and Arabian Seas: a comparison with the Red Sea fauna. Hydrobiologia 292(293):271–282

    Article  Google Scholar 

  • Böttger-Schnack R (1995) Summer distribution of micro- and small mesozooplankton in the Red Sea and Gulf of Aden, with special reference to non-calanoid copepods. Mar Ecol Prog Ser 118:81–102

    Article  Google Scholar 

  • Böttger-Schnack R, Schnack D (1989) Vertical distribution and population structure of Macrosetella gracilis (Copepoda: Harpacticoida) in the Red Sea in relation to the occurrence of Oscillatoria (Trichodesmium) spp. (Cyanobacteria). Mar Ecol Prog Ser 52:17–31

    Article  Google Scholar 

  • Böttger-Schnack R, Hagen W, Schnack-Schiel SB (2001) The microcopepod fauna in the Gulf of Aqaba, northern Red Sea: species diversity and distribution of Oncaeidae (Poecilostomatoida). J Plankt Res 23:1029–1035

    Article  Google Scholar 

  • Böttger-Schnack R, Schnack D, Weikert H (1989) Biological observations on small cyclopoid copepods in the Red Sea. J Plankt Res 11:1089–1101

    Article  Google Scholar 

  • Böttger-Schnack R, Lenz J, Weikert H (2004) Are taxonomic details of relevance to ecologists? An example from oncaeid microcopepods of the Red Sea. Mar Biol 144:1127–1140

    Article  Google Scholar 

  • Boxshall GA, Böttger R (1987) Two new species of Oncaea (Copepoda: Poecilostomatoida) from the Red Sea and a redescription of O. atlantica Shmeleva. J Plankt Res 9(3):553–564

    Article  Google Scholar 

  • Boxshall GA, Halsey SH (2004) An introduction to copepod diversity. The Ray Society, London

    Google Scholar 

  • Cleve PT (1900) Plankton from the Red Sea. Öfvaf K Vet Acad Förhandl 9:1025–1038

    Google Scholar 

  • Conover RJ (1956) Oceanography of Long Island Sound, 1952-1954: VI. Biology of Acartia clausi and A. tonsa. Bull Bingham Oceanographical Collection 15:156–233

    Google Scholar 

  • Cornils A, Schnack-Schiel SB, Hagen W, Dowidar M, Stambler N, Plahn O, Richter C (2005) Spatial and temporal distribution of mesozooplankton in the Gulf of Aqaba and the northern Red Sea in February/March 1999. J Plankt Res 27(6):505–518

    Article  Google Scholar 

  • Cornils A, Niehoff B, Richter C, Al-Najjar T, Schnack-Schiel SB (2007a) Seasonal abundance and reproduction of clausocalanid copepods in the northern Gulf of Aqaba (Red Sea). J Plankt Res 29(1):57–70

    Article  Google Scholar 

  • Cornils A, Schnack-Schiel SB, Al-Najjar T, Badran MI, Rasheed M, Manasreh R, Richter C (2007b) The seasonal cycle of the epipelagic mesozooplankton in the northern Gulf of Aqaba (Red Sea). J Mar Syst 68(1):278–292

    Article  Google Scholar 

  • Cornils A, Schnack-Schiel SB, Böer M, Graeve M, Struck U, Al-Najjar T, Richter C (2007c) Feeding of Clausocalanids (Calanoida, Copepoda) on naturally occurring particles in the northern Gulf of Aqaba (Red Sea). Mar Biol 151(4):1261–1274

    Article  Google Scholar 

  • Couwelaar MV (1997) Zooplankton and micronekton biomass off Somalia and in the southern Red Sea during the SW monsoon of 1992 and the NE monsoon of 1993. Deep-Sea Res II 44(6–7):12l3–1234

    Google Scholar 

  • Cushing DH (1955) Some experiments on the vertical migration of zooplankton. J Anim Ecol 24(1):137–166

    Article  Google Scholar 

  • De Robertis A (2002) Size-dependent visual predation risk and the timing of vertical migration: an optimization model. Limnol Oceanogr 47:925–933

    Article  Google Scholar 

  • Delalo EP (1966) Distribution of the zooplankton biomass in the Red Sea and the Gulf of Aden, winter 1961/62. Okeanologicheskige Issled 15:131–139 (in Russian)

    Google Scholar 

  • Dojiri M (1988) Isomolgus desmotes, new genus, new species (Lichomolgidae), a gallicolous poecilostome copepod from the scleractinian coral Seriatopora hystrix Dana in Indonesia, with a review of gall-inhabiting crustaceans of anthozoans. J Crust Biol 8:99–109

    Article  Google Scholar 

  • Dorgham MM, El-Sherbiny MM, Hanafy MH (2012) Vertical distribution of zooplankton in the epipelagic zone off Sharm El-Sheikh, Red Sea. Egypt. Oceanologia 54:473–489

    Article  Google Scholar 

  • Drillet G, Gael D (2007–2009) World Copepod Culture Database. See: http://copepod.ruc.dk/main.htm

  • Echelman T, Fishelson L (1990) Surface zooplankton dynamics and community structure in the Gulf of Aqaba (Eilat), Red Sea. Mar Biol 107:179–190

    Article  Google Scholar 

  • El-Rashidy HH, Boxshall GA (2011) Two new species of parasitic copepods (Crustacea) on two immigrant rabbitfishes (Family Siganidae) from the Red Sea. Syst Parasitol 79(2):175–193

    Article  Google Scholar 

  • El-Rashidy HH, Boxshall GA (2012) A new copepod (Siphonostomatoida: Lernanthropidae) parasitic on a Red Sea immigrant dragonet (Actinopterygii: Callionymidae), with a review of records of parasitic copepods from dragonets. Syst Parasitol 81(2):87–96

    Article  Google Scholar 

  • El-Rashidy HH, Boxshall GA (2016) Parasitic copepods from Egyptian Red Sea fishes: bomolochidae Claus, 1875. Syst Parasitol 93(2):205–217

    Article  Google Scholar 

  • El-Serehy HA, Abd El-Rahman NS (2004) Distribution patterns of planktonic copepod crustaceans in the coral reef and sandy areas along the Gulf of Aqaba, Red Sea. Egypt. Egyptian J Biol 6:126–135

    Google Scholar 

  • El-Serehy HA, Abd El-Rahman NS, Al-Rasheid KA, Al-Misned FA, Shafik HM, Bahgat MM (2013) Copepod dynamics in the epipelagic zone of two different regional aquatic ecological basins at the northern Red Sea. Egypt. Life Sci J 10(4):212–405

    Google Scholar 

  • El-Sherbiny MM (2009) First record and redescription of Pontella princeps Dana, 1849 (Copepoda: Pontellidae) in the Red Sea with notes on its feeding habits. Catrina 4(1):11–20

    Google Scholar 

  • El-Sherbiny MM (2011) A new species of Centropages (Copepoda: Calanoida) from the neritic waters of Sharm El-Sheikh, the Red Sea. J Mar Biol Assoc UK 91:479–484

    Article  Google Scholar 

  • El-Sherbiny MM, Al-Aidaroos AM (2013) First record and redescription of Macandrewella cochinensis Gopalakrishnan, 1973 (Copepoda, Scolecitrichidae) from the Red Sea, with notes on swarm formation. ZooKeys 344:1–15

    Article  Google Scholar 

  • El-Sherbiny MM, Al-Aidaroos AM (2014) First report of the presence of Acartia bispinosa Carl, 1907 (Copepoda, Calanoida) in a semi-enclosed bay (Sharm El-Maya), northern Red Sea with some notes on its seasonal variation in abundance and body size. Zookeys 444:95–118

    Article  Google Scholar 

  • El-Sherbiny MM, Al-Aidaroos AM (2015) A new species of Centropages (Copepoda: Calanoida: Centropagidae) from the central Red Sea based on morphological and molecular evidence. Zootaxa 3911(3):396–410

    Article  Google Scholar 

  • El-Sherbiny MM, Al-Aidaroos AM (2017) A new species of Calanopia (Copepoda, Calanoida, Pontellidae) from the plankton of the central Red Sea. Mar Biodiv. https://doi.org/10.1007/s12526-017-0694-3

    Article  Google Scholar 

  • El-Sherbiny MM, Ueda H (2008a) Centropages aegypticus, a new species of calanoid copepod from the northern Red Sea. J Mar Biol Assoc UK 88(1):69–75

    Article  Google Scholar 

  • El-Sherbiny MM, Ueda H (2008b) Redescription of the poorly known calanoid copepod Pontella karachiensis Fazal-Ur-Rehman, 1973 from the Red Sea with notes on its feeding habits. Plankt Benthos Res 3(1):10–17

    Article  Google Scholar 

  • El-Sherbiny MM, Ueda H (2010) Labidocera boxshalli sp. nov., a new calanoid copepod (Crustacea; Pontellidae) from the Red Sea. Org Divers Evol 10(1):23–29

    Article  Google Scholar 

  • El-Sherbiny MM, Hanafy MH, Aamer MA (2007) Monthly variations in abundance and species composition of the epipelagic zooplankton off Sharm El-Sheikh, northern Red Sea. Res J Environ Sci 1:200–210

    Article  Google Scholar 

  • El-Sherif ZM, Aboul Ezz SM (2000) Check list of plankton of the northern Red Sea. Pakistan J Mar Sci 9(1–2):61–78

    Google Scholar 

  • Farstey V (2001) Feeding and vertical distribution the calanoid copepods Rhincalanus nasutus Giesbrecht and Pleuromamma indica Wolfenden in the seasonally mixed water column in the northern part of the Gulf of Aqaba. Ph.D. thesis, Hebrew University, Jerusalem, Israel, 108 pp

    Google Scholar 

  • Farstey B, Lazar B, Genin A (2002) Expansion and homogeneity of the vertical distribution of zooplankton in a very deep mixed layer. Mar Ecol Prog Ser 238:91–100

    Article  Google Scholar 

  • Fedorina AI, Kornilova GN (1970) The zooplankton of the Red Sea. Trudy Azovsko-Chernomorskogo Vauchno-Issledovatel’skogo Inst Rybnogo Khozyaistva: Okeanogr 30:48–59

    Google Scholar 

  • Ferrari FD, Böttger R (1986) Sexual dimorphism and a sex-limited polymorphism in the copepod Paroithona pacifica Nishida, 1985 (Cyclopoida, Oithonidae) from the Red Sea. Proc Biol Soc Wash 99:274–285

    Google Scholar 

  • Fiksen O, Giske J (1995) Vertical distribution and population dynamics of copepods by dynamic optimization. ICES J Mar Sci 52:483–503

    Article  Google Scholar 

  • Genin A, Gal G, Haury L (1995) Copepod carcasses in the ocean. 2. Near coral-reefs. Mar Ecol Prog Ser 123:65–71

    Article  Google Scholar 

  • Genin A, Jaffe JS, Reef R, Richter C, Franks PJS (2005) Swimming against the flow: a mechanism of zooplankton aggregation. Science 308:860–862

    Article  Google Scholar 

  • Goldman CR, Heron AJ (1983) Limnology, 1st edn. McGraw-Hill, New York, p 464

    Google Scholar 

  • Gordeyeva KT (1970) Quantitative distribution of zooplankton in the Red Sea. Okeanologija Mosk 10:867–871

    Google Scholar 

  • Gorelova TA (1974) Zooplankton from the stomachs of juvenile lantern fish of the family Myctophidae. Okeanologija 10:867–871

    Google Scholar 

  • Halim Y (1969) Plankton of the Red Sea. Oceanogr Mar Biol Ann Rev 7:231–275

    Google Scholar 

  • Halim Y (1984) Plankton of the Red Sea and Arabian Gulf. Deep Sea Res Part A, Oceanogr Res Pap 31(6–8):969–982

    Article  Google Scholar 

  • Halim Y (1990) On the potential migration of Indo-Pacific plankton through the Suez Canal. Bull Inst Oceanogr Monaco 7:11–27

    Google Scholar 

  • Ho JS, Conradi M, López-González PJ (1998) A new family of cyclopoid copepods (Fratiidae) parasitic in the ascidian (Clavelina dellavallei) from Cádiz, Spain. J Zool Lond 246:39–48

    Google Scholar 

  • Holzman R, Reidenbach MA, Monismith SG, Koseff JR, Genin A (2005) Near-bottom depletion of zooplankton over a coral reef II: Relationships with zooplankton swimming ability. Coral Reefs 24:87–94

    Article  Google Scholar 

  • Huys R, Boxshall GA (1991) Copepod evolution. The Ray Society, London, p 468

    Google Scholar 

  • Huys R, Faitih F, Ohtsuka S, Llewellyn-Hughes J (2012) Evolution of the bomolochiform superfamily complex (Copepoda: Cyclopoida): new insights from ssrDNA and morphology, and origin of umazuracolids from polychaete-infesting ancestors rejected. Int J Parasitol 42:71–92

    Article  Google Scholar 

  • Irigoien X, Verheye HM, Harris RP, Harbour D (2005) Effect of food composition on egg production and hatching success rate of two copepod species (Calanoides acutus and Rhincalanus nasutus) in the Benguela upwelling system. J Plankt Res 27:735–742

    Article  Google Scholar 

  • Ivanenko VN, Moudrova SV, Bouwmeester J, Berumen ML (2014) First report of tubular corallites on Stylophora caused by a symbiotic copepod crustacean. Coral Reefs 33:637

    Article  Google Scholar 

  • Karbe L (1980) Plankton investigations in an exposed reef of the central Red Sea (Shaab Baraja, Sudan). In: Abu Gideiri YB (ed) Proc Symposium on the Coastal and Marine Environment of the Red Sea, Gulf of Aden and Tropical Western India Ocean, 9–14 Jan. 1980, Khartoum, vol. 2. International Printing House, Khartoum, pp 519–540

    Google Scholar 

  • Kasahara S, Uye S, Onbe T (1974) Calanoid copepods eggs in sea-bottom mud. Mar Biol 26:167–171

    Article  Google Scholar 

  • Khalil MT, Abd El-Rahman NS (1997) Abundance and diversity of surface zooplankton in the Gulf of Aqaba, Red Sea. Egypt. J Plankt Res 19(7):927–936

    Article  Google Scholar 

  • Khmeleva NN (1970) On the primary production in the Red Sea and the Gulf of Aden. Biol Morya, Kiev 21:107–133 (in Russian)

    Google Scholar 

  • Kim J, Kim W (2000) Molecular phylogeny of poecilostome copepods based on the 18S rDNA sequences. Korean J Biol Sci 4:257–261

    Article  Google Scholar 

  • Kim IH, Yamashiro H (2007) Two species of poecilostomatoid copepods inhabiting galls on scleractinian corals in Okinawa, Japan. J Crust Biol 27:319–326

    Article  Google Scholar 

  • Kimmerer WJ (1984) Selective predation and its impact on prey of Sagitta enflata (Chaetognatha). Mar Ecol Prog Ser 15:55–62

    Article  Google Scholar 

  • Kimor B (1973) Primary productivity in the Indian Ocean. In: Zeitzschel B (ed) The biology of the Indian Ocean. Springer, Berlin, pp 221–232

    Chapter  Google Scholar 

  • Kimor B, Golansky B (1977) Microplankton of the Gulf of Elat: Aspects of seasonal and bathymetric distribution. Mar Biol 42:55–67

    Article  Google Scholar 

  • Kiorboe T (2000) Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol Oceanogr 45:479–484

    Article  Google Scholar 

  • Klinker J, Reiss Z, Kropach C, Levanon I, Harpaz H, Shapiro Y (1978) Nutrients and biomass distribution in the Gulf of Aqaba (Elat), Red Sea. Mar Biol 45:53–64

    Article  Google Scholar 

  • Krey J (1973) Primary productivity in the Indian Ocean. In: Zeitzschel B (ed) The biology of the Indian Ocean. Springer, Berlin, pp 115–128

    Chapter  Google Scholar 

  • Kürten B, Khomayis HS, Devassy R, Audritz S, Sommer U, Struck U, El-Sherbiny MM, Al-Aidaroos AM (2015) Ecohydrographic constraints on biodiversity and distribution of phytoplankton and zooplankton in coral reefs of the Red Sea, Saudi Arabia. Mar Ecol 36:1195–1214

    Article  Google Scholar 

  • Kürten B, Al-Aidaroos AM, Kürten S, El-Sherbiny MM, Devassy RP, Struck U, Zarokanellos N, Jones BH, Hansen T, Bruss G, Sommer U (2016) Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea. Prog Oceanogr 140:69–90

    Article  Google Scholar 

  • Lampert W (1989) The adaptive significance of diel vertical migration in zooplankton. Funct Ecol 3:21–27

    Article  Google Scholar 

  • Lenz J, Schneider G, El-Hag AGD, Gradinger R, Fritsche P, Moigis A, Pillen T, Rolke M, Weisse T (1988) Planktological data from the central Red Sea and the Gulf of Aden. Ber Inst MeereskundeKiel 180:1–20

    Google Scholar 

  • Levanon-Spanier I, Padan E, Reiss Z (1979) Primary production in a desert-enclosed sea—the Gulf of Elat (Aqaba), Red Sea. Deep-Sea Res 26:673–685

    Article  Google Scholar 

  • Lieske E, Myers RF (2004) Coral reef guide: red sea. Harper Collins Publishers, London, p 384

    Google Scholar 

  • Lindell D, Post AF (1995) Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol Oceanogr 40:1130–1141

    Article  Google Scholar 

  • Manasrah R, Badran M, Lass HU, Fennel W (2004) Circulation and winter deep water formation in the northern Red Sea. Oceanologia 1:5–23

    Google Scholar 

  • Manasrah R, Raheed M, Badran MI (2006) Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba. Red Sea. Oceanologia 48(2):237–253

    Google Scholar 

  • Meenakshikunjarnma PP (1974) The distribution of the subgenus Urocorycaeus (Genus Corycaeus, Corycaeidae, Copepoda) in the Indian Ocean. J Mar Biol Assoc India 16:769–774

    Google Scholar 

  • Mojib N, Thimma M, Kumaran M, Sougrat R, Irigoien X (2017) Comparative metatranscriptomics reveals decline of a neustonic planktonic population. Limnol Oceanogr 62:299–310

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Annu Rev 8:73–202

    Google Scholar 

  • Morcos SA, AbdAllah AM (2012) Oceanography of the Gulf of Aden John Murray-Mabahiss Expedition 1933–1934 Revisited. Egyptian J Aq Res 38:77–91

    Article  Google Scholar 

  • Motro R, Ayalon I, Genin A (2005) Near-bottom depletion of zooplankton over coral reefs: III: Vertical gradient of predation pressure. Coral Reefs 24:95–98

    Article  Google Scholar 

  • Mullin MM, Brooks ER (1967) Laboratory culture, growth rate, and feeding behavior of a planktonic marine copepod. Limnol Oceanogr 12:657–666

    Article  Google Scholar 

  • Nicholls AG (1944) Littoral Copepoda from the Red Sea. Ann Mag Nat Hist 11:487–503

    Article  Google Scholar 

  • Nishida S, Marumo R (1982) Vertical distribution of cyclopoid copepods of the family Oithonidae in the Western Pacific and Eastern Indian Ocean. Bull Plankt Soc Japan 29:99–118

    Google Scholar 

  • Ohtsuka S, El-Sherbiny MM, Ueda H (2000) Taxonomy, functional morphology and behavioral ecology of the planktonic calanoid copepod Tortanus (Atortus). Crustacean Res 29:1–11

    Article  Google Scholar 

  • Omori M, Ikeda T (1984) Methods in marine zooplankton ecology. John Wiley and Sons Inc, New York, p 372

    Google Scholar 

  • Pearman JK, Irigoien X (2015) Assessment of zooplankton community composition along a depth profile in the central Red Sea. PLoS ONE 10(7):e0133487. https://doi.org/10.1371/journal.pone.0133487

    Article  Google Scholar 

  • Pearman JK, El-Sherbiny MM, Lanzén A, Al-Aidaroos AM, Irigoien X (2014) Zooplankton diversity across three Red Sea reefs using pyrosequencing. Frontiers Mar Sci 1:27. https://doi.org/10.3389/fmars.2014.00027

    Article  Google Scholar 

  • Peterson WT (1998) Life cycle strategies in coastal upwelling. J Mar Syst 15:313–326

    Article  Google Scholar 

  • Plaehn O, Baschek B, Badewien TH, Walter M, Rhein M (2002) Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea. J Geophys Res 107:1–17

    Google Scholar 

  • Ponomareva LA (1968) Quantitative distribution of zooplankton in the Red Sea as observed in the period May to June 1966. Oceanology Wash (Transl of Okeanologiya Moskow) 8:240–242

    Google Scholar 

  • Por FD (1978) Lessepsian migration—the influx of the Red Sea biota into the Mediterranean by way of the Suez Canal. Ecological Studies Vol. 23. Springer, Berlin Heidelberg New York 228 pp

    Google Scholar 

  • Razouls C, de Bovée F, Kouwenberg J, Desreumaux N (2005–2017) Diversity and geographic distribution of marine planktonic copepods. http://copepodes.obs-banyuls.fr/en. Accessed May 14, 2017

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba. Ecological Micropaleontology (Ecol Stud 50), Springer, Berlin

    Google Scholar 

  • Richman S, Loya Y, Sloboclkin LB (1975) The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol Oceanogr 20(6):918–923

    Article  Google Scholar 

  • Ringelberg J (1995) Changes in light intensity and diel vertical migration: A comparison of marine and freshwater environments. J Mar Biol Assoc UK 75:15–25

    Article  Google Scholar 

  • Sale PF, McWilliam PS, Anderson DT (1978) Faunal relationships among the near-reef zooplankton at three locations on Heron Reef, Great Barrier Reef, and seasonal changes in this fauna. Mar Biol 49:133–145

    Article  Google Scholar 

  • Sameoto DD (1986) Influence of the biological and physical environment on the vertical distribution of mesozooplankton and micronekton in the eastern tropical Pacific. Mar Biol 93:263–279

    Article  Google Scholar 

  • Schmidt HE (1973) The vertical distribution and diurnal migration of some zooplankton in the Bay of Eilat (Red Sea). Helgoländ Wiss Meer 24:333–340

    Article  Google Scholar 

  • Schnack-Schiel SB, Niehoff B, Hagen W, Bottger-Schnack R, Cornils A, Dowidar MM, Pasternak A, Stambler N, Stubing D, Richter C (2008) Population dynamics and life strategies of Rhincalanus nasutus (Copepoda) at the onset of the spring bloom in the Gulf of Aqaba (Red Sea). J Plankt Res 30(6):655–672

    Article  Google Scholar 

  • Schneider G, Lenz J (1991) Zooplankton community metabolism in the upper 200 m of the central Red Sea and the Gulf of Aden. Mar Ecol Prog Ser 77:301–306

    Article  Google Scholar 

  • Schneider G, Lenz J, Rolke M (1994) Zooplankton standing stock and community size structure within the epipelagic zone: A comparison between the central Red Sea and the Gulf of Aden. Mar Biol 119:191–198

    Article  Google Scholar 

  • Sen Gupta R and Desa E (2001) The Indian Ocean—A Perspective. Vol. 2. CRC Press, 868 pp

    Google Scholar 

  • Sewell RBS (1948) The free swimming planktonic Copepoda. Geographic distribution. Sci Rep John Murray Exped 8:317–579

    Google Scholar 

  • Sofianos SS, Johns WE (2003) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Three dimensional circulation in the Red Sea. J Geophys Res 108(C3):3066

    Article  Google Scholar 

  • Sommer U, Stibor H (2002) Copepoda—Cladocera—Tunicata: The role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17(2):161–174

    Article  Google Scholar 

  • Sommer U, Berninger UG, Böttger-Schnack R, Cornils A, Hagen W, Hansen T, Al-Najjar T, Post AF, Schnack-Schiel SB, Stibor H, Stübing D, Whickham S (2002) Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Mar Ecol Prog Ser 239:251–261

    Article  Google Scholar 

  • Stambler N (2005) Bio-optical properties of the northern Red Sea and the Gulf of Eilat (Aqaba) during winter 1999. J Sea Res 54(3):186–203

    Article  Google Scholar 

  • Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev 49:43–104

    Google Scholar 

  • Sullivan BK (1980) In situ feeding behavior of Sagitta elegans and Eukrohnia hamata (Chaetognatha) in relation to the vertical distribution and abundance of prey at Ocean Station “P”. Limnol Oceanogr 25:317–326

    Article  Google Scholar 

  • Tomosada A, Odate K (1995) Long term variability in zooplankton biomass and environment. J Umi Sor 71:1–7

    Google Scholar 

  • Tsalkina AV (1977) Vertical distribution and diurnal migrations of Cyclopoida (Copepoda) in the waters of the North Trade Winds Current and the Sulu Sea. Polskie Archm Hydrobiol 24:337–362

    Google Scholar 

  • Vaissiere R, Sequin G (1984) Initial observations of the zooplankton microdistribution on the fringing reef at Aqaba (Jordan). Mar Biol 83:1–11

    Article  Google Scholar 

  • Vinogradov ME (1968) Vertical distribution of the oceanic zooplankton. Akad Sci USSR, Inst Oceanog, Moscow (in Russian, translated by Israel Programme for Scientific Translation Ltd, Jerusalem, Keter Press, 1970), 339 pp

    Google Scholar 

  • Wafar M, Ashraf M, Manikandan KP, Qurban MA, Kattan Y (2016) Gulf of Aden intermediate water (GAIW) in the Red Sea. J Mar Syst 154:243–251

    Article  Google Scholar 

  • Weikert H (1980a) On the plankton of the central Red Sea. A first synopsis of results obtained from the cruises Meseda I and Mesada II. ProcSymposium on the Coastal and Marine Environment of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean, Khartoum, Sudan 3:135–167

    Google Scholar 

  • Weikert H (1980b) The oxygen minimum layer in the Red Sea: Ecological implication of the zooplankton occurrence in the area of the Atlantis II Deep. Meeresforschung 28:1–9

    Google Scholar 

  • Weikert H (1981) The pelagic communities. Mining of metalliferous sediments from the Atlantis II deep, Red Sea: pre-mining environmental conditions and evaluation of the risk environment. In: Karbe L, Thiel H, Weikert H, Mill ABJ (eds) Environmental impact study presented to Saudi Arabia-Sudanese Red Sea Joint Commission, Jeddah. Hamburg, pp 100–154

    Google Scholar 

  • Weikert H (1982) The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis II Deep, Central Red Sea. Mar Ecol Prog Ser 8:129–143

    Article  Google Scholar 

  • Weikert H (1987) Plankton and the pelagic environment. In: Edwards A, Head SM (eds) Red Sea. Key environmental series. Pergarnon Press, Oxford, pp 90–111

    Chapter  Google Scholar 

  • Weikert H (1988) New information on the productivity of the deep Eastern Mediterranean and Red Seas. Rapp P-V Reun Comm Int Explor Scient Mer Mediterr 31:305

    Google Scholar 

  • Williamson CEO, Olson G, Lott SE, Walker ND, Engstrom DR, Hargreaves BR (2001) Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82:1748–1760

    Article  Google Scholar 

  • Yahel G, Post AF, Fabricius K, Marie KD, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563

    Article  Google Scholar 

  • Yahel R, Yahel G, Berman T, Jaffe JS, Genin A (2005) Diel pattern with abrupt crepuscular changes of zooplankton over a coral reef. Limnol Oceanogr 50:930–944

    Article  Google Scholar 

  • Ye L, Chang CY, García-Comas C, Gong GC, Hsieh C (2013) Increasing zooplankton diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82:1052–1061

    Article  Google Scholar 

  • Zarubin M, Farstey V, Wold A, Falk-Petersen S, Genin A (2014) Intraspecific differences in lipid content of Calanoid copepods across fine-scale depth ranges within the photic layer. PLoS ONE 9(3):e92935. https://doi.org/10.1371/journal.pone.0092935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Al-Aidaroos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Aidaroos, A.M., El-Sherbiny, M.M., Mantha, G. (2019). Copepoda—Their Status and Ecology in the Red Sea. In: Rasul, N., Stewart, I. (eds) Oceanographic and Biological Aspects of the Red Sea. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-99417-8_25

Download citation

Publish with us

Policies and ethics