Skip to main content

Constraining the Opening of the Red Sea: Evidence from the Neoproterozoic Margins and Cenozoic Magmatism for a Volcanic Rifted Margin

  • Chapter
  • First Online:
Geological Setting, Palaeoenvironment and Archaeology of the Red Sea

Abstract

As the Earth’s best-known example of an active, incipient ocean basin, the Red Sea provides crucial information about continental rifting and the tectonic transition from extended continental crust to seafloor spreading. Study of the Red Sea over the past decades has given many answers, but significant questions remain about how and when it opened because of lacking or ambiguous data and thick salt cover. A key issue is the geometry of the pre-rift join between the Arabian and Nubian Shields that form the basement flanking the Red Sea because this constrains the nature of Red Sea crust. The Neoproterozoic basement rocks flanking the Red Sea contain prominent shears and sutures between amalgamated tectonostratigraphic terranes, regions of transpressional shortening, and brittle-ductile faults related to Ediacaran orogenic collapse and tectonic escape. These structures vary in orientation from orthogonal to oblique with respect to the Red Sea coastlines. Importantly, they correlate across the Red Sea, and provide piercing points for a near coast-to-coast palinspastic reconstruction of the Arabian and Nubian Plates along the entire Red Sea. A tight pre-rift fit of the Arabian and Nubian Shields implies that most of the Red Sea is underlain by oceanic crust. Potential-field data are compelling evidence for oceanic crust along the axis of the Red Sea south of latitude ~22°N, persuasive for the margins of the southern Red Sea, and suggestive for the northern Red Sea. A variety of 20–24 Ma dikes, gabbros, and basaltic flows emplaced during the early stages of Red Sea rifting are consistent with Miocene asthenospheric upwelling, partial melting, and intrusion that would have weakened and facilitated rupture of the ~40-km thick continental crust and thicker mantle lithosphere of the then contiguous Arabian and Nubian Shields. The dikes, gabbros, and basaltic flows emplaced during the early stages of Red Sea rifting are strong evidence furthermore that the Red Sea is an example of a volcanic-rifted margin. Offshore seismic profiling designed to image beneath the salt followed by drilling to basement in the Red Sea are required to test these ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Gawad M (1970) Interpretation of satellite photographs of the Red Sea and Gulf of Aden (with discussion). In: A discussion of the structure and evolution of the Red Sea and the nature of the Red Sea, Gulf of Aden and Ethiopia rift junction. Phil Trans R S London Ser A 267:23–40

    Google Scholar 

  • Abd El-Naby H, Frisch W, Siebel W (2008) Tectono-metamorphic evolution of the Wadi Hafafit Culmination (central Eastern Desert, Egypt). Implication for Neoproterozoic core complex exhumation in NE Africa. Geol Acta 6:293–312

    Google Scholar 

  • Abd El-Wahed M, Ashmawy M, Tawfik H (2010) Structural setting of Cretaceous pull-part basins and Miocene extensional folds in the Quseir-Umm Gheig region, northwestern Red Sea, Egypt. Lithosphere 2:13–32

    Article  Google Scholar 

  • Abdelsalam MG (1994) The Oko shear zone: post-accretionary deformations in the Arabian Nubian Shield. J Geol Soc London 151:767–776

    Article  Google Scholar 

  • Abdelsalam MG (2010) Quantifying 3D post-accretionary tectonic strain in the Arabian-Nubian Shield: superimposition of the Oko Shear Zone on the Nakasib Suture, Red Sea Hills, Sudan. J Afr Earth Sci 56:167–178

    Article  Google Scholar 

  • Abdelsalam MG, Stern RJ (1993) Tectonic evolution of the Nakasib suture, Red Sea Hills, Sudan: evidence for a late Precambrian Wilson cycle. J Geol Soc London 150:393–404

    Article  Google Scholar 

  • Abdelsalam MG, Stern RJ (1996) Sutures and shear zones in the Arabian-Nubian Shield. J Afr Earth Sci 23:289–310

    Article  Google Scholar 

  • Abdelsalam MG, Liégeois JP, Stern RJ (2002) The saharan metacraton. J Afr Earth Sci 34:119–136

    Article  Google Scholar 

  • Abu-Alam T, Stüwe K, Kadi K (2011) Pan-African exhumation mechanisms. Geophys Res Abstracts, EGU General Assembly 13:EGU2011-10307-1

    Google Scholar 

  • Ali KA, Azer MK, Gahlan HA, Wilde SA, Samuel MD, Stern RJ (2010) Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt. Gondwana Res 18:583–595

    Article  Google Scholar 

  • Andresen A, Abu El-Rus MA, Myhre PI, Boghdady GY, Corfu F (2009) U-Pb TIMS age constraints on the evolution of the Neoproterozoic Meatiq Gneiss Dome, Eastern desert, Egypt. Int J Earth Sci 98(3):481–497. https://doi.org/10.1007/s00531-007-0276

    Article  Google Scholar 

  • Andresen A, Augland LE, Boghdady GY, Lundmark AM, Elnady OM, Hassan MA (2010) Structural constraints on the evolution of the Meatiq gneiss domes (Egypt), East-African Orogen. J Afr Earth Sci 57:413–422

    Article  Google Scholar 

  • Avigad D, Gvirtzman Z (2009) Late Neoproterozoic rise and fall of the northern Arabian-Nubian Shield: the role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 477:217–228

    Article  Google Scholar 

  • Azer M, Stern RJ (2007) Neoproterozoic serpentinites in the Eastern Desert, Egypt: fragments of fore-arc mantle. J Geol 115:457–472

    Article  Google Scholar 

  • Bennett GD, Mosely P (1987) Tiered tectonics and evolution, Eastern Desert and Sinai, Egypt. In: Matheis G, Schandelmeier H (eds) Current research in African Earth sciences. Balkema, Rotterdam, The Netherlands, pp 79–82

    Google Scholar 

  • Beyth M, Stern RJ, Matthews A (1977) Significance of high-grade metasediments from the Neoproterozoic basement of Eritrea. Precambrian Res 86:45–58

    Article  Google Scholar 

  • Bialas RW, Buck WR, Qin R (2010) How much magma is required to rift a continent? Earth Planet Sci Lett 292:68–78

    Article  Google Scholar 

  • Blank HR, Mooney WD, Healy JH, Gettings MA, Lamson RJ (1986) A seismic refraction interpretation of the eastern margin of the Red Sea depression, Southwest Saudi Arabia. US Geological Survey Open-file Report 86–257, 24 p

    Google Scholar 

  • Blank HR, Johnson PR, Gettings ME, Simmons GC (1987) Geologic map of the Jizan quadrangle, Sheet 16F, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-104

    Google Scholar 

  • Blasband B, White S, Brooijmans P, De Broorder H, Visser W (2000) Late Proterozoic extensional collapse in the Arabian-Nubian Shield. J Geol Soc London 157:615–628

    Article  Google Scholar 

  • Bohannon RG (1989) Style of extensional tectonism during rifting, Red Sea and Gulf of Aden. J Afr Earth Sci 8:589–602

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37

    Google Scholar 

  • Bonatti E, Cipriani A, Lupi L (2015) The Red Sea: birth of an ocean. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 29–44. https://doi.org/10.1007/978-3-662-45201-1_2

    Google Scholar 

  • Bosworth W (2015) Geological evolution of the Red Sea: historical background, review, and synthesis. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 45–78. https://doi.org/10.1007/978-3-662-45201-1_3

    Google Scholar 

  • Bosworth W, Stockli DF (2016) Early magmatism in the greater Red Sea rift: timing and significance. Canadian J Earth Sci. https://doi.org/10.1139/cjes-2016-0019

    Article  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Article  Google Scholar 

  • Brueckner HK, Bonatti E, Elhaddad MA, Hamelin B, Kröner A, Reisberg L, Seyler M (1996) A Nd, Sr, Pb and Os study of the gneisses and ultramafic rocks of Zabargad Island, Red Sea: Miocene Moho or Pan African peridotites. J Geophys Res 100(B11):22283–22297

    Article  Google Scholar 

  • Burke K, Sengor C (1985) Tectonic escape in the evolution of the continental crust. In: Barazangi M, Brown L (eds) Reflection seismology: the continental crust. American geophysical union geodynamics series, vol 14, pp 41–53

    Chapter  Google Scholar 

  • Claesson S, Pallister JS, Tatsumoto M (1984) Samarium-neodymium data on two late Proterozoic ophiolites of Saudi Arabia and implications for crustal and mantle evolution. Contrib Mineral Petrol 85:244–252

    Article  Google Scholar 

  • Cochran JR (1983) A model for development of Red Sea. Bull Am Assoc Petrol Geol 67:41–69

    Google Scholar 

  • Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53

    Article  Google Scholar 

  • Coleman RG (1993) Geologic evolution of the Red Sea. Oxford Monographs on Geology and Geophysics. Oxford University Press, New York, 186 p

    Google Scholar 

  • Coleman RG, Brown GF, Keith TEC (1972) Layered gabbros in southwest Saudi Arabia. U.S. Geological Survey Professional Paper 800-D:D143–D150

    Google Scholar 

  • Coleman RG, Hadley DG, Fleck RJ, Hedge CT, Donato MM (1979) The Miocene Tihama Asir ophiolite and its bearing on the opening of the Red Sea. In: Al-Shanti AMS (ed) Evolution and mineralization of the Arabian-Nubian Shield. Pergamon Press, New York, pp 173–187

    Chapter  Google Scholar 

  • Collenette P, Grainger DJ (1994) Kyanite and andalusite. In: Collenette P, Grainger DJ (eds) Mineral resources of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources DGMR Special Publication SP2, pp 149–155

    Google Scholar 

  • d’Almeida GAF (2010) Structural evolution history of the Red Sea rift. Geotectonics 44:271–282

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80

    Article  Google Scholar 

  • DGMR (1977) Red Sea research 1970–1975. In: Saudi Arabian directorate general of mineral resources bulletin, vol 22, 223 p

    Google Scholar 

  • Dixon TH, Ivins ER, Franklin BJ (1989) Topographic and volcanic asymmetry around the Red Sea: constraints on rift models. Tectonics 8:1193–1216

    Article  Google Scholar 

  • Drury SA, de Souza Filho CR (1988) Neoproterozoic terrane assemblages in Eritrea: review and prospects. J Afr Earth Sci 27:331–348

    Article  Google Scholar 

  • Duncan IJ, Rivard B, Arvidson RE, Sultan M (1990) Structural interpretation and tectonic evolution of the Najd Shear Zone (Saudi Arabia) using Landsat thematic-mapper data. Tectonophysics 178:309–315

    Article  Google Scholar 

  • El-Gaby S, List FK, Tehrani R (1988) Geology, evolution and metallogenesis of the Pan-African Belt in Egypt. In: El Gaby S, Greiling R (eds) The Pan-African Belt of NE Africa and adjacent areas, tectonic evolution and economic aspects. Vieweg, Braunschweig, Wiesbaden, pp 17–68

    Google Scholar 

  • El-Gaby S, List FK, Tehrani R (1990) The basement complex of the Eastern Desert and Sinai. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 175–184

    Google Scholar 

  • Fritz H, Dallmeyer DR, Wallbrecher E, Loizenbauer J, Hoinkes G, Neumayr P, Khudeir AA (2002) Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: a slow velocity tectonic process of core complex exhumation. J Afr Earth Sci 34:137–155

    Article  Google Scholar 

  • Fritz H, Abdelsalam M, Ali K, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson P, Kusky T, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogens: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106

    Article  Google Scholar 

  • Gaina C, Gernigon L, Bail P (2009) Palaeocene-recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. J Geol Soc London 66:606–616

    Google Scholar 

  • Gettings ME, Blank HR, Mooney WD, Healey JH (1986) Crustal structure of southwestern Saudi Arabia. J Geophys Res 91:6491–6512

    Article  Google Scholar 

  • Ghebreab W, Talbot CJ, Page L (2005) Time constraints on exhumation of the East African Orogen from field observations and 40Ar/39Ar cooling ages of low-angle mylonites in Eritrea, NE Africa. Precamb Res 139:20–41

    Article  Google Scholar 

  • Gillman M (1968) Preliminary results of a geological and geophysical reconnaissance of the Jizan coastal plain in Saudi Arabia. In: AIME regional tech symposium rep 2d, Dhahran, pp 198–208

    Google Scholar 

  • Girdler RW (1970) A review of Red Sea heat flow. Phil Trans R Soc Ser A 267:191–203

    Article  Google Scholar 

  • Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J R Astron Soc 51:245–252

    Article  Google Scholar 

  • Girdler RW, Styles P (1974) Two stage seafloor spreading. Nature 247:7–11

    Article  Google Scholar 

  • Golan, T, Katzir Y, Coble MA (2017) Early Carboniferous anorogenic magmatism in the Levant: implications for rifting in northern Gondwana. Int Geol Rev 60. https://doi.org/10.1080/00206814.2017.1326089

    Article  Google Scholar 

  • Goldberg M, Beyth M (1991) Tiran Island: an internal block at the junction of the Red Sea and Dead Sea transform. Tectonophysics 198:261–273

    Article  Google Scholar 

  • Greenwood WR, Anderson RE (1977) Palinspastic map of the Red Sea area prior to Miocene sea-floor spreading. In: Saudi Arabian directorate general of mineral resources bulletin, vol 22, pp Q1–Q6

    Google Scholar 

  • Habib ME, Ahmed AA, El Nady OM (1985) Tectonic evolution of the Meatiq infrastructure, Central Eastern Desert, Egypt. Tectonics 4:613–627

    Article  Google Scholar 

  • Hall SA (1989) Magnetic evidence for the nature of the crust beneath the southern Red Sea. J Geophys Res 94:12267–12279

    Article  Google Scholar 

  • Hall SA, Andresen GE, Girdler RW (1977) Total-intensity magnetic anomaly map of the Red Sea and adjacent coastal area, a description and preliminary interpretation. In: Saudi Arabia directorate general of mineral resources bulletin, vol 22, pp F1–F13

    Google Scholar 

  • Hamimi Z, El-Sawy EK, El-Fakharani A, Matsah M, Shujoon A, El-Shafei MK (2014) Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia. J Afr Earth Sci 99:51–63

    Article  Google Scholar 

  • Handy MR, Brun J-P (2004) Seismicity, structure and strength of the continental lithosphere. Earth Planet Sci Lett 223:427–441

    Article  Google Scholar 

  • Hansen S, Schwartz S, Al-Amri A, Rodgers A (2006) Combined plate motion and density-driven flow in the asthenosphere beneath Saudi Arabia: evidence from shear-wave splitting and seismic anisotropy. Geology 34:869–872

    Article  Google Scholar 

  • Hansen SE, Rodgers AJ, Schwartz SY, Al-Amri AMS (2007) Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth Planet Sci Lett 259:256–265

    Article  Google Scholar 

  • Hargrove US (2006) Crustal evolution of the Neoproterozoic Bi’r Umq suture zone, Kingdom of Saudi Arabia. Geochronological, isotopic, and geochemical constraints. Unpublished PhD thesis, University of Texas at Dallas, 343 p

    Google Scholar 

  • Hosny A, Nyblade A (2016) Crustal structure of Egypt from Egyptian National Seismic Network data. Tectonophysics 687:257–267

    Article  Google Scholar 

  • Ilani S, Harlavan Y, Tarawneh K, Rabba I, Weinberger R, Ibrahim K, Peltz S, Steinitz G (2001) New K-Ar ages of basalts from the Harrat ash Shaam volcanic field in Jordan: implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29:171–174

    Article  Google Scholar 

  • Jackson J (2002) Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today, September, pp 4–9

    Article  Google Scholar 

  • Japsen P, Chalmers JA, Green PF, Bonow JM (2011) Elevated, passive continental margins: not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Glob Planet Change. https://doi.org/10.1016/j.gloplacha.2011.05.004

    Article  Google Scholar 

  • Johnson PR, Andersen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232

    Article  Google Scholar 

  • Kearey P, Klepeis KA, Vine FJ (2009) Global tectonics. Wiley-Blackwell, Chichester, UK, p 482

    Google Scholar 

  • Kennedy A, Kozdroj W, Kattan FH, Kodzroj MZ, Johnson PR (2010) SHRIMP geochronology in the Arabian Shield (Midyan terrane, Afif terrane, Ad Dawadimi terrane) and Nubian Shield (Central Eastern Desert terrane) Part IV: data acquisition 2008. Saudi Geological Survey Open-File Report SGSOF-2010–10, 101 p

    Google Scholar 

  • Khalil SM, McClay KR (2001) Tectonic evolution of the NW Red Sea-Gulf of Suez rift system. Geol Soc Spec Publ London 187:453–473

    Article  Google Scholar 

  • Khalil SM, McClay KR (2002) Extensional fault-related folding, northwestern Red Sea. Egypt. J Struc Geol 24:743–762

    Article  Google Scholar 

  • Kozdroj W, Kattan FH, Kadi KA, Al Alfy ZFA, Oweiss KA, Mansour MM (2011) SGS-EMRA Project for Trans-Red Sea Correlation between the Central Eastern Desert Terrane (Egypt) and Midyan Terrane (Saudi Arabia). Saudi Geological Survey Open-File Report SGS-TR-2011-5

    Google Scholar 

  • Kusznir NJ, Park RG (1987) The extensional strength of continental lithosphere: its dependence on geothermal gradient and crustal thickness and composition. Geol Soc Spec Publ London 28:35–52

    Article  Google Scholar 

  • Lazar M, Ben-Avraham Z, Garfunkel Z (2012) The Red Sea—new insights from recent geophysical studies and the connection to the Dead Sea fault. J Afr Earth Sci 68:96–110

    Article  Google Scholar 

  • Levin V, Park J (2000) Shear zones in the Proterozoic lithosphere of the Arabian Shield and the nature of the Hales discontinuity. Tectonophysics 323:131–148

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Tontini FC, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2012gc004155

    Article  Google Scholar 

  • Ligi M, Bonatti E, Rasul NMA (2015) Seafloor spreading initiation: geophysical and geochemical constraints from the Thetis and Nereus deeps, central Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 79–98. https://doi.org/10.1007/978-3-662-45201-1_4

    Google Scholar 

  • Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from west Iberia and the Alps. Int J Earth Sci 93:432–466

    Article  Google Scholar 

  • Martinez F, Cochran JR (1988) Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics 150:1–31

    Article  Google Scholar 

  • McGuire AV, Coleman RG (1986) The Jabal Tirf layered gabbro and associated rocks of the Tihama Asir Complex, SW Saudi Arabia. J Geol 94:651–665

    Article  Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci 40:25–32

    Article  Google Scholar 

  • Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U-Pb ages. Gondwana Res 23:661–665

    Article  Google Scholar 

  • Menzies MA, Klemperer SL, Ebinger CJ, Baker J (2002) Characteristics of volcanic rifted margins. Geol Soc Am Spec Paper 362:1–14

    Google Scholar 

  • Meyer SE, Passchier C, Abu-Alam T, Stüwe K (2014) A strike-slip core complex from the Najd fault system, Arabian Shield. Terra Nova 26:387–394

    Article  Google Scholar 

  • Miller MM, Dixon TH (1992) Late Proterozoic evolution of the N part of the Hamisana zone, NE Sudan: constraints on Pan-African accretionary tectonics. J Geol Soc London 149:743–750

    Article  Google Scholar 

  • Mooney WD, Gettings ME, Blank HR, Healy JH (1985) Saudi Arabian seismic-refraction profile: a traveltime interpretation of crustal and upper mantle structure. Tectonophysics 111:173–246

    Article  Google Scholar 

  • Mutter JC, Talwani M, Stoffa PL (1982) Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea-floor spreading”. Geology 10:353–357

    Article  Google Scholar 

  • Orszag-Sperber F, Harwood G, Kendall A, Purser BH (1998) A Review of the Evaporites of the Red Sea-Gulf of Suez rift. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 409–426

    Chapter  Google Scholar 

  • Pallister JS (1986) Geologic map of the Al Lith Quadrangle, Sheet 20D, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map GM-95

    Google Scholar 

  • Pallister JS (1987) Magmatic History of Red Sea rifting: perspectives from the central Saudi Arabian coastal plain. Geol Soc Am Bull 98:400–417

    Article  Google Scholar 

  • Pallister JS, Stacey JS, Fischer LB, Premo WR (1988) Precambrian ophiolites of Arabia: geologic settings, U-Pb geochronology, Pb-isotopes characteristics, and implications for continental accretion. Precamb Res 38:1–54

    Article  Google Scholar 

  • Pallister JS, McCausland WA, Jónsson S, Lu Z, Zahran HM, Hadidy SE, Aburukbah A, Stewart ICF, Lundgren PR, White RA, Moufti MRH (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat Geosci 3:705–712

    Article  Google Scholar 

  • Park Y, Nyblade AA, Rodgers AJ, Al-Amri A (2008) S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochem Geophys Geosyst 9. https://doi.org/10.1029/2007gc001895

    Article  Google Scholar 

  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroğlu R, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcan Geotherm Res 44:189–229

    Article  Google Scholar 

  • Powell JH, Abed AM, Le Nindre Y-M (2014) Cambrian stratigraphy of Jordan. GeoArabia 19:81–134

    Google Scholar 

  • Prodehl C (1985) Interpretation of a seismic-refraction survey across the Arabian shield in western Saudi Arabia. Tectonophysics 111:247–282

    Article  Google Scholar 

  • Rasul NMA, Stewart ICF (2015) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, 638 p

    Google Scholar 

  • Rasul NMA, Stewart ICF, Nawab ZA (2015) Introduction to the Red Sea: its origin, structure, and environment. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 1–28. https://doi.org/10.1007/978-3-662-45201-1_1

    Google Scholar 

  • Reilinger R, McClusky S, Ar Rajehi A (2015) Geodetic constraints on the geodynamic evolution of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 135–149

    Google Scholar 

  • Roeser HA (1975) A detailed magnetic survey of the southern Red Sea. Geol Jahrb D13:131–153

    Google Scholar 

  • Roobol MJ, Stewart ICF (2009) Cenozoic faults and recent seismicity in northwest Saudi Arabia and the Gulf of Aqaba region. Saudi geological survey technical report SGS-TR-2008-7, 35 p

    Google Scholar 

  • Saleh S, Jahr T, Jentzsch G, Saleh A, Abou Ashour NM (2006) Crustal evaluation of the northern Red Sea rift and Gulf of Suez, Egypt from geophysical data: 3-dimensional modeling. J Afr Earth Sci 45:257–278

    Article  Google Scholar 

  • Schardt C (2016) Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Miner Deposita 51:89–111

    Article  Google Scholar 

  • Sebai A, Zumbo V, Férand G, Bertrand H, Hussain AG, Giannérini G, Campredon R (1991) 40Ar/39Ar dating of alkaline and tholeiitic magmatism of Saudi Arabia related to the early Red Sea rifting. Earth Planet Sci Lett 104:473–487r

    Article  Google Scholar 

  • Shimron AE (1989) The Red Sea Line—a Late Proterozoic transcurrent fault. J Afr Earth Sci 11:95–112

    Article  Google Scholar 

  • Squire RJ, Campbell IH, Allen CM, Wilson CJL (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett 250:116–133

    Article  Google Scholar 

  • Stern RJ (1985) The Najd Fault System, Saudi Arabia and Egypt: a late Precambrian rift-related transform system. Tectonics 4:497–511

    Article  Google Scholar 

  • Stern RJ (1994) Neoproterozoic (900-550 Ma) arc assembly and continental collision in the East African Orogen. Ann Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117

    Article  Google Scholar 

  • Stern RJ (2017) Neoproterozoic formation and evolution of Eastern Desert continental crust—the importance of the infrastructure-superstructure transition. J African Earth Sci. https://doi.org/10.1016/jafreasci.2017.01.001

  • Stern RJ, Johnson PR (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth-Sci Rev 101:29–67

    Article  Google Scholar 

  • Stern RJ, Kröner A, Manton WI, Reischmann T, Mansour MM, Hussein IM (1989a) Geochronology of the late Precambrian Hamisana shear zone, Red Sea Hills, Sudan and Egypt. J Geol Soc London 145:1017–1029

    Article  Google Scholar 

  • Stern RJ, Kröner A, Manton WI, Reischmann T, Mansour M, Hussein IM (1989b) Geochronology of the late Precambrian Hamisana shear zone, Red Sea Hills, Sudan and Egypt. J Geol Soc London 146:1017–1029

    Article  Google Scholar 

  • Stern RJ, Nielsen KC, Best E, Sultan M, Arvidson RE, Kröner A (1990) Orientation of late Precambrian sutures in the Arabian Nubian shield. Geology 18:1103–1106

    Article  Google Scholar 

  • Stern RJ, Johnson PJ, Kröner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian-Nubian Shield. In: Kusky T (ed) Precambrian Ophiolites. Elsevier, pp 95–128

    Google Scholar 

  • Stern RJ, Ren M, Ali K, Förster H-J, Al Safarjalani A, Nasir S, Whitehouse MJ, Leybourne MI (2014) Early Carboniferous (~357 Ma) crust beneath northern Arabia: tales from Tell Thannoun (southern Syria). Earth Planet Sci Lett 393:83–93

    Article  Google Scholar 

  • Stern RJ, Ali KA, Ren M, Jarrar GH, Romer RL, Leybourne MI, Whitehouse MJ, Ibrahim KM (2016) Cadomian (∼ 560 Ma) crust buried beneath the northern Arabian Peninsula: mineral, chemical, geochronological, and isotopic constraints from NE Jordan xenoliths. Earth Planet Sci Lett 436:31–42

    Article  Google Scholar 

  • Stewart ICF, Johnson PR (1994) Satellite gravity and Red Sea tectonics. Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report USGS-OF-94-10, 22 p

    Google Scholar 

  • Stoeser DB, Frost CD (2006) Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem Geol 226:163–188

    Article  Google Scholar 

  • Suayah IB, Rogers JJW, Dabbagh ME (1991) High-Ti continental tholeiites from the Aznam trough, northwestern Saudi Arabia: evidence of “abortive” rifting in the “embryonic” stage of Red Sea opening. Tectonophysics 191:75–87

    Article  Google Scholar 

  • Sultan M, Arvidson RE, Duncan IJ, Stern RJ, El Kaliouby B (1988) Extension of the Najd shear system from Saudi Arabia to the Central Eastern Desert of Egypt based on integrated field and Landsat observations. Tectonics 7:1291–1306

    Article  Google Scholar 

  • Sultan M, Becker M, Arvidson RE, Shore P, Stern RJ, El Alfy Z, Attia RI (1993) New constraints on Red Sea rifting from correlations of Arabian and Nubian Neoproterozoic outcrops. Tectonics 12:1303–1319

    Article  Google Scholar 

  • Szymanski E (2013) Timing, kinematics, and spatial distribution of Miocene extension in the central Arabian margin of the Red Sea rift system. PhD dissertation, U Kansas, 430 p

    Google Scholar 

  • Szymanski E, Stockli DF, Johnson PR (2012) Evidence for an early and sustained mode of diffuse lithospheric extension in the central Arabian flank of the Red Sea rift system: implications for margin structural; kinematics and basin development. In: The American association of petroleum geologists annual convention and exhibition, Long Beach, CA, abstract no. 1235423

    Google Scholar 

  • Szymanski E, Stockli DF, Johnson PR, Hager C (2016) Thermochronometric evidence for diffuse extension and two-phase rifting within the central Arabian margin of the Red Sea Rift. Tectonics 35. https://doi.org/10.1002/2016tc004336

    Article  Google Scholar 

  • Szymanski E, Stockli DF, Johnson PR, Kattan FH, Al Shammari A (2007) Observations from fieldwork and (U-Th)/He thermochronologic study of the central Arabian flank of the Red Sea rift system. In: The American geophysical union, fall meeting 2007, abstract #T41A-0379

    Google Scholar 

  • Tang Z, Julià J, Zahran H, Mai PM (2016) The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics 680:8–27

    Article  Google Scholar 

  • Thomas WA (2006) Tectonic inheritance at a continental margin. GSA Today 16(2):4–11. https://doi.org/10.1130/1052-5173(2006)016%3c4:TIAACM%3e2.0.CO;2

    Article  Google Scholar 

  • Vail JR (1985) Pan-African (Late Precambrian) tectonic terranes and the reconstruction of the Arabian-Nubian shield. Geology 13:839

    Article  Google Scholar 

  • Voss M, Jokat W (2007) Continent-ocean transition and voluminous magmatic underplating derived from P-wave velocity modeling of the East Greenland continental margin. Geophys Res Lett 170:580–604

    Google Scholar 

  • Wegener A (1920) Die Entstehung der Kontinente und Ozeane. Vieweg, Brunswick, p 135

    Google Scholar 

  • Wolfenden E, Ebinger C, Yirgu G, Renne P, Kelley S (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol Soc Am Bull 117:846–864

    Article  Google Scholar 

  • Zahran HM, Stewart ICF, Johnson PR, Basahel MH (2003) Aeromagnetic anomaly maps of central and western Saudi Arabia. Saudi Geological Survey Open-File Report SGS-OF-2002-8

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Zohair Nawab and Dr. Najeeb Rasul of the Saudi Geological Survey for organizing the second workshop on the Red Sea in Jeddah in 2016 that gave us the occasion to consolidate our ideas about the initiation of the Red Sea and thank Springer-Verlag for publishing this paper as part of the workshop proceedings. We greatly appreciate the critical comments and suggestions of three anonymous referees. This is UTD Geosciences contribution # 1299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stern, R.J., Johnson, P.R. (2019). Constraining the Opening of the Red Sea: Evidence from the Neoproterozoic Margins and Cenozoic Magmatism for a Volcanic Rifted Margin. In: Rasul, N., Stewart, I. (eds) Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Springer, Cham. https://doi.org/10.1007/978-3-319-99408-6_4

Download citation

Publish with us

Policies and ethics