Skip to main content

Results of Micropalaeontological Analyses on Sediment Core FA09 from the Southern Red Sea Continental Shelf

  • Chapter
  • First Online:

Abstract

This study presents results of an examination of planktonic and benthic foraminiferal assemblages from the upper half of a 2.64 m-long sediment gravity core retrieved from the southern Red Sea continental shelf. The examined interval corresponds to the time period of the last 16 kyr. The microfaunal associations show concurrent and concomitant variations at long and short time scales. The examined deglacial interval suggests that the Strait of Bab al Mandab most likely remained open, connecting the Red Sea with the Indian Ocean, although this connection was extremely limited. Productive waters associated with inflow from the Gulf of Aden into the Red Sea prevailed during the Late Glacial and Early Holocene periods (~10 to ~6 ka BP), a phase of intensified summer monsoons in the Arabian Sea. The Late Holocene period shows a reduction of productivity and sea floor oxygenation during which time the winter monsoon was stronger. Short-term variations in the abundances of planktonic and benthic foraminiferal assemblages have been linked to events of increased aridity within the Late Glacial and Holocene intervals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Zied RH (2013) Effect of the Red Sea brine-filled deeps (Shaban and Kebrit) on the composition and abundance of benthic and planktonic foraminifera. Arab J Geosci 6:3809–3826

    Article  Google Scholar 

  • Abu-Zied RH, Bantan RA, Basaham AS, El Mamoney MH, Al-Washmi HA (2011) Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea, Saudi Arabia. J Foramin Res 41:349–362

    Article  Google Scholar 

  • Almogi-Labin A, Hemleben C, Meischner D, Erlenkeuser H (1991) Paleoenvironmental events during the last 13,000 years in the central Red Sea as recorded by pteropoda. Paleoceanography 6:83–98

    Article  Google Scholar 

  • Almogi-Labin A, Hemleben C, Meischner D, Erlenkeuser H (1996) Response of Red Sea deep-water agglutinated foraminifera to water mass changes during the Late Quaternary. Mar Micropaleontol 28:283–297

    Article  Google Scholar 

  • Anderson DM, Prell WL (1991) Coastal upwelling gradient during the Late Pleistocene. In: Proceedings of the ODP Scientific Results, vol 117, pp 265–276

    Google Scholar 

  • Arz HW, Lamy F, Pätzold J, Müller PJ, Prins M (2003) Mediterranean moisture source for an Early Holocene humid period in the northern Red Sea. Science 300:118–121

    Article  Google Scholar 

  • Auras-Schudnagies A, Kroon D, Ganssen G, Hemleben C, van Hinte JE (1989) Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors. Deep Sea Res Part A 36:1515–1533

    Article  Google Scholar 

  • Badawi A, Schmiedl G, Hemleben C (2005) Impact of late Quaternary environmental changes on deep-sea benthic foraminiferal faunas of the Red Sea. Mar Micropaleontol 58(1):13–30

    Article  Google Scholar 

  • Bailey G, Al-Sharekh A, Flemming N, Lambeck K, Momber G, Sinclair A, Vita-Finzi C (2007) Coastal prehistory in the southern Red Sea Basin, underwater archaeology, and the Farasan Islands. In: Proceedings of the Seminar for Arabian Studies, vol 37, pp 1–16

    Google Scholar 

  • Bailey G, Deves MH, Inglis RH, Meredith-Williams MG, Momber G, Sakellariou D, Sinclair AGM, Rousakis G, Al Ghamdi S, Alsharekh AM (2015) Blue Arabia: Palaeolithic and underwater survey in SW Saudi Arabia and the role of coasts in Pleistocene dispersals. Quat Int 382:42–57

    Article  Google Scholar 

  • Bailey G, Meredith-Williams M, Alsharekh A, Hausmann N (this volume) The archaeology of Pleistocene coastal environments and human dispersals in the Red Sea: Insights from the Farasan Islands

    Google Scholar 

  • Bantan RA (1999) Geology and sedimentary environments of Farasan Bank (Saudi Arabia) southern Red Sea: A combined remote sensing and field study. Unpublished PhD dissertation, University of London, U.K., 296 pp

    Google Scholar 

  • Bijma J, Faber J, Hemleben C (1990) Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J Foraminiferal Res 20(2):95–116

    Article  Google Scholar 

  • Biton E, Gildor H, Peltier WR (2008) The Red Sea during the Last Glacial Maximum: Implications for sea level reconstruction. Paleoceanography 23, PA1214. https://doi.org/10.1029/2007pa001431

    Article  Google Scholar 

  • Blackwelder P, Hood T, Alvarez-Zarikian C, Nelsen TA, McKee B (1996) Benthic foraminifera from the NECOP study area impacted by the Mississippi River plume and seasonal hypoxia. Quat Int 31:19–36

    Article  Google Scholar 

  • Bosence DWJ, Al-Awah MH, Davison I, Rosen BR, Vita-Finzi C, Whittaker E (1998) Salt domes and their control on basin margin sedimentation: a case study from the Tihama plain, Yemen. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 448–466

    Chapter  Google Scholar 

  • Dabbagh A, Emmermann R, Hötzl H, Jado AR, Lippolt HJ, Kollmann W, Moser H, Rauert W, Zötl JG (1984) The development of Tihamat Asir during the Quaternary. In: Jado AR, Zotl JG (eds) Quaternary Period in Saudi Arabia, vol 2. Sedimentological, Hydrogeological, Hydrochemical, Geomorphological, Geochronological and Climatological Investigations in Western Saudi Arabia. Springer, Vienna, pp 150–173

    Google Scholar 

  • Das M, Singh RK, Gupta AK, Bhaumik AK (2017) Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? Palaeogeogr Palaeoclimatol Palaeoecol 483:125–135

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York, p 647

    Google Scholar 

  • De S, Gupta AK (2010) Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera. Palaeogeog Palaeoclimat Palaeoecol 291:429–442

    Article  Google Scholar 

  • Demarchi B, Williams MG, Milner N, Russell N, Bailey G, Penkman K (2011) Amino acid racemization dating of marine shells: amound of possibilities. Quat Int 239:114–124

    Article  Google Scholar 

  • Dreano D, Raitsos DE, Gittings J, Krokos G, Hoteit I (2016) The Gulf of Aden Intermediate Water intrusion regulates the southern Red Sea summer phytoplankton blooms. PLoS ONE 11(12):e0168440. https://doi.org/10.1371/journal.pone.0168440

    Article  Google Scholar 

  • Edelman-Fürstenberg Y, Scherbacher M, Hemleben C, Almogi-Labin A (2001) Deep-sea benthic foraminifera from the central Red Sea. J Foramin Res 31:48–59

    Article  Google Scholar 

  • Fenton M, Geiselhart S, Rohling EJ, Hemleben C (2000) Aplanktic zones in the Red Sea. Mar Micropaleontol 40:277–294

    Article  Google Scholar 

  • Fernandes C, Rohling EJ, Siddall M (2006) Absence of Quaternary Red Sea land bridges: biogeographic implications. J Biogeogr 33:961–966

    Article  Google Scholar 

  • Fleitmann D, Burns S, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary A, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188

    Article  Google Scholar 

  • Grant KM, Rohling EJ, Bar-Matthews M, Ayalon A, Medina-Elizalde M, Bronk Ramsey C, Satow C, Roberts AP (2012) Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491:744–747

    Article  Google Scholar 

  • Grant KM, Rohling EJ, Bronk Ramsey C, Cheng H, Edwards RL, Florindo F, Heslop D, Marra F, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level variability over five glacial cycles. Nat Commun 5:5076. https://doi.org/10.1038/ncomms6076

    Article  Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357

    Article  Google Scholar 

  • Gupta AK, Sarkar S, De S, Clemens SC, Velu A (2010) Mid-Brunhes strengthening of the Indian Ocean Dipole caused increased equatorial East African and decreased Australasian rainfall. Geophys Res Lett 37:L06706, 6

    Article  Google Scholar 

  • Gupta AK, Mohan K, Sarkar S, Clemens SC, Ravindra R, Uttam RK (2011) East-west similarities and differences in the surface and deep northern Arabian Sea records during the past 21 Ka. Palaeogeog Palaeoclimat Palaeoecol 301:75–85

    Article  Google Scholar 

  • Halicz E, Reiss Z (1981) Palaeoecological relations of foraminifera in a desert enclosed sea: the Gulf of Aqaba. Mar Ecol 2:15–34

    Article  Google Scholar 

  • Hemleben C, Spindler M, Breitinger I, Ott R (1987) Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Mar Micropaleontol 12:305–324

    Article  Google Scholar 

  • Hottinger L, Halicz E, Reiss Z (1993) Recent Foraminifera from the Gulf of Aqaba, Red Sea. Slovenska Akademija Znanosti in Umetnosti, Ljubljana, p 179

    Google Scholar 

  • Ivanochkoa TS, Ganeshrama RS, Brummerb GJ, Ganssenc G, Jungc S, Moretond S, Kroon D (2005) Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planet Sci Lett 235(1):302–314. https://doi.org/10.1016/j.epsl.2005.04.002

    Article  Google Scholar 

  • Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved oxygen levels in the modern ocean. Geology 22:719–722

    Article  Google Scholar 

  • Kroon D, Ganssen G (1989) Northern Indian Ocean upwelling cells and the stable isotope composition of living planktic foraminifers. Deep-Sea Res 36:1219–1236

    Article  Google Scholar 

  • Lambeck K, Purcell A, Fleming NC, Vita-Finzi C, Alsharekh AM, Bailey G (2011) Sea level and shoreline reconstructions for the Red Sea: Isostatic and tectonic considerations and implications for hominin migration out of Africa. Quat Sci Rev 30:3542–3574

    Article  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial maximum to the Holocene. Proc Natl Acad Sci USA 111(43):15296–15303

    Article  Google Scholar 

  • Locke S, Thunell RC (1988) Paleoceanographic record of the last glacial/interglacial cycle in the Red Sea and Gulf of Aden. Palaeogeog Palaeoclimat Palaeocol 64:163–187

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification, vol 2. Van Nostrand Reinhold, New York

    Google Scholar 

  • Mateu-Vicens G, Box A, Deudero S, Rodriguez B (2010) Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidoniaoceanica and invasive macroalgae Caulerpa spp. J Foramin Res 40:134–147

    Article  Google Scholar 

  • Mendes I, Gonzalez R, Dias JMA, Lobo F, Martins V (2004) Factors influencing recent benthic foraminifera distribution on the Guadiana shelf (southwestern Iberia). Mar Micropaleontol 51:171–192

    Article  Google Scholar 

  • Momber G, Sakellariou D, Bailey G, Rousakis G (this volume) The multi-disciplinary search for underwater archaeology in the southern Red Sea

    Google Scholar 

  • Moodley L, Schaub BEM, Van der Zwaan GJ, Herman PMJ (1998) Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide. Mar Ecol Prog Ser 169:77–86

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Ann Rev 8:73–202

    Google Scholar 

  • Murray JW (1991) Ecology and paleoecology of benthic foraminifera. John Wiley & Sons, New York, p 397

    Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, pp 426

    Google Scholar 

  • Overpeck J, Rind D, Lacis A, Healy R (1996) Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384:447–449. https://doi.org/10.1038/384447a0

    Article  Google Scholar 

  • Platon E, Sen Gupta BK, Rabalais NN, Turner RE (2005) Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record. Mar Micropaleontol 54:263–283

    Article  Google Scholar 

  • Raitsos DE, Yi X, Platt T, Racault M, Brewin RJW, Pradhan Y, Papadopoulos VP, Sathyendranath S, Hoteit I (2015) Monsoon oscillations regulate fertility of the Red Sea. Geophys Res Lett 42:855–862

    Article  Google Scholar 

  • Reyment RA, Joreskog KG (1996) Applied factor analysis in the natural sciences. Cambridge University Press, Cambridge, p 371

    Google Scholar 

  • Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394:162–165

    Article  Google Scholar 

  • Rohling EJ, Grant KM, Roberts AP, Larrasoaña JC (2013) Palaeoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years; implications for hominin migrations. Curr Anthropol 54(No. S8, Alternative Pathways to Complexity: Evolutionary Trajectories in the Middle Paleolithic and Middle Stone Age):S183–S201

    Google Scholar 

  • Schulz H, Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57

    Article  Google Scholar 

  • Sen Gupta BK, Machain-Castillo ML (1993) Benthic foraminifera in oxygen-poor habitats. Mar Micropaleontol 20:183–201

    Article  Google Scholar 

  • Siccha M, Trommer G, Schulz H, Hemleben C, Kucera M (2009) Factors controlling the distribution of planktonic foraminifera in the Red Sea and implications for the development of transfer functions. Mar Micropaleontol 72:146–156

    Article  Google Scholar 

  • Siddall M, Smeed DA, Matthieen S, Rohling EJ (2002) Modeling the seasonal cycle of the exchange flow. Deep-Sea Res 49:1551–1569

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  Google Scholar 

  • Siddall M, Smeed DA, Hemleben C, Rohling EJ, Schmelzer I, Peltier WR (2004) Understanding the Red Sea response to sea level. Earth Planet Sci Lett 225:421–434

    Article  Google Scholar 

  • Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res 112:C06025. https://doi.org/10.1029/2006JC003886

  • Sofianos S, Papadopoulos V, Abulnaja Y, Giouroukou D, Bolonaki E, Hoteit I (2016) Summer-time monsoon-driven variability in the Red Sea and the effects of the exchanges with the Indian Ocean. In: International conference on the marine environment of the Red Sea. King Abdullah University of Science and Technology

    Google Scholar 

  • Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WW-S (2002) Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44:167–180

    Article  Google Scholar 

  • Thiede J (1975) Distribution of foraminifera in coastal waters of an upwelling area. Nature 253:712–714

    Article  Google Scholar 

  • Triantafyllou G, Yao F, Petihakis G, Tsiaras KP, Raitsos DE, Hoteit I (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res Oceans 119:1791–1811

    Article  Google Scholar 

  • Trommer G, Siccha M, Rohling EJ, Grant K, van der Meer MTJ, Schouten S, Hemleben C, Kucera M (2010) Millennial-scale variability in Red Sea circulation in response to Holocene insolation forcing. Paleoceanography 25. https://doi.org/10.1029/2009PA001826

  • Van der Zwaan GJ, Duijnstee IAP, den Dulk M, Ernst SR, Jannink NT, Kouwenhoven TJ (1999) Benthic foraminifers: proxies or problems? a review of paleoecological concepts. Earth Sci Rev 46:213–236

    Google Scholar 

  • Weiner A, Weinkauf M, Kurasawa A, Darling K, Kucera M (2015) Genetic and morphometric evidence for parallel evolution of the Globigerinella calida morphotype. Mar Micropaleontol 114:19–35

    Article  Google Scholar 

  • Woelk S, Quadfasel D (1996) Renewal of deep water in the Red Sea during 1982–1987. J Geophys Res 101(C8):18155–18165

    Article  Google Scholar 

  • Wyrtki K (1974) On the deep circulation of the Red Sea. L’oceanographie physique de la Mer Rouge. Cent Natl pour l’Exploitation des Oceans, Paris, pp 135–163

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council through ERC Advanced Grant269586 ‘DISPERSE: Dynamic Landscapes, Coastal Environments and Human Dispersals’ to Geoff Bailey and Geoffrey King, 2011–2016. We thank HRH Crown Prince Salman bin Abul Aziz Al Saud and the Department of General Survey of the Ministry of Defense and HRH Prince Sultan bin Salman bin Abdul Aziz, President of the Saudi Commission for Tourism and National Heritage (SCTH) for permits and general support, and the President of the Saudi Geological Survey, Dr. Zohair Nawab and his staff, in particular Dr. Najeeb Rasul, for additional support and for their invitation to participate in the Jeddah Workshop. In addition, we thank Geoff Bailey and the personnel at Scottish Universities Environmental Research Centre (SUERC, Glasgow, Scotland) for arranging the radiocarbon analysis. Finally, we give special thanks to the crew of the R/V Aegaeo for their great and responsible work during the survey. This is DISPERSE contribution no. 45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Geraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geraga, M., Sergiou, S., Sakellariou, D., Rohling, E. (2019). Results of Micropalaeontological Analyses on Sediment Core FA09 from the Southern Red Sea Continental Shelf. In: Rasul, N., Stewart, I. (eds) Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Springer, Cham. https://doi.org/10.1007/978-3-319-99408-6_32

Download citation

Publish with us

Policies and ethics