Skip to main content

Mushrooms as a Biological Tool in Mycoremediation of Polluted Soils

  • Chapter
  • First Online:
Emerging Issues in Ecology and Environmental Science

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

One of the major environmental problems faced by today’s world is the contamination of soil, water, and air by toxic chemicals, and the distinct and unique role of microorganisms in the detoxification of polluted soil and environments is well recognized. Fungal mycelia have been primary governors for maintaining ecological equilibrium because they control the flow of nutrients. The strength and health of any ecosystem is a direct measure of its main components—the fungal populations and their interaction with other organisms such as plants, animals, and bacteria. Using fungi as the starter culture species in a mycoremediation project sets the stage for other organisms to participate in the rehabilitation process. The introduction of fungal mycelium into a polluted site triggers a flow of activity and begins to replenish the polluted ecosystem. Mycoremediation is an economically and environmentally sound alternative for bioremediation. It is not widely used at present, but this technology has wider potential than other technologies. Fungi perform a wide variety of functions in ecosystem and potentially have been proven to be clean, simple, and relatively inexpensive for environmental remediation. Examples of fungi used as mycoremediators are Pleurotus ostreatus ; Rhizopus arrhizus; Phanerochaete chrysosporium and P. sordida; and Tramates hirsuta and T. versicolor; and Lentinus edodes and L. tigrinus. Thus, this clean technology has greater potential and its untapped potential has to be fully exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenipekun CO, Fasidi IO (2005) Bioremediation of oil polluted soil by Lentinus subnudus, a Nigerian white rot fungus. Afr J Biotechnol 4(8):796–798

    CAS  Google Scholar 

  • Adenipekun CO, Isikhuemhen OS (2008) Bioremediation of engine oil polluted soil by the tropical white-rot fungus, Lentinussquarrosulus Mont (Singer). Pak J Biol Sci 11(12):1634–1637

    Article  CAS  Google Scholar 

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68

    CAS  Google Scholar 

  • Adenipekun CO, Ejoh EO, Ogunjobi AA (2011a) Bioremediation of cutting fluids contaminated soil by Pleurotus tuber-regium singer. Environmentalist 32:11–18

    Article  Google Scholar 

  • Adenipekun CO, Ogunjobi AA, Ogunseye OA (2011b) Management of polluted soils by a white-rot fungus, Pleurotus pulmonarius. Assump Univ J Technol 15(1):57–61

    Google Scholar 

  • Aitken MB, Irvine RL (1989) Stability testing of ligninase and Mn peroxidase from Phanerochaetechrysosporium. Biotechnol Bioeng J 34:1251–1260

    Article  CAS  Google Scholar 

  • Akinyele BJ, Olaniyi OO, Arotupin DJ (2011) Bioconversion of selected agricultural wastes and associated enzymes by Volvariella volvacea: an edible mushroom. Res J Microbiol 4:63–70

    Article  Google Scholar 

  • Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malays J Microbiol 4:135–140

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white-rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  Google Scholar 

  • Ashoka G, Geetha MS, Sullia SB (2002) Bioleaching of composite textile dye effluent using bacterial consortia. Asian J Microbial Biotechnol Environ Sci 4:65–68

    Google Scholar 

  • Baldrian P, Der Wiesche CI, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478

    Article  CAS  Google Scholar 

  • Barr BP, Aust D (1994) Mechanisms of white-rot fungi use to degrade pollutant. Environ Sci Technol 28:78–87

    Article  Google Scholar 

  • Belewu MA, Belewu KY (2005) Cultivation of mushroom (Volvariella volvacea) on banana leaves. Afr J Biotechnol 4:1401–1403

    Google Scholar 

  • Bennet JW, Connick WJ, Daigle D, Wunch K (2001) Formulation of fungi for in situ bioremediation. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 97–108

    Chapter  Google Scholar 

  • Bhatt M, Cajthaml T, Sasek V (2002) Mycoremediation of PAH-contaminated soils. Folia Microbiol 47(3):255–258

    Article  CAS  Google Scholar 

  • Bhattacharya S, Angayarkanni J, Das A, Palaniswamy M (2012) Mycoremediation of benzo[a]pyrene by Pleurotus ostreatus isolated from Wayanad District in Kerala, India. Int J Pharm Bio Sci 2(2):84–93

    CAS  Google Scholar 

  • Bojan BW, Lamar RT, Burjus WD, Tien M (1999) Extent of humification of anthrecene, fluoranthene adbenzo (a) pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol 28:250–254

    Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Brienzo M, Silva EM, Milagres AM (2007) Degradation of eucalyptus waste components by Lentinula edodes strains detected by chemical and near-infrared spectroscopy methods. Appl J Biochem Biotechnol 4:37–50

    Article  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous Fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Am Soc Microbiol 72(1):28–36

    Google Scholar 

  • Da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of Oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 4(8):69386

    Article  Google Scholar 

  • Dua S, Asu DE, Sarosha R, Kumar V (2006) Phytoremediation: cost effective approval for the removal of soil contaminants. In: Mukerji KG, Manoharachary C (eds) Current concepts in botany. I K International Publishing House, New Delhi, pp 425–446

    Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 41:111–117

    Article  CAS  Google Scholar 

  • Eggen T, Sveum P (1999) Decontamination of aged creosote polluted soil: the influence of temperature, white-rot fungus Pleurotus ostreatus, and pre-treatment. Int Biodeterior Biodegrad 43:125–133

    Article  CAS  Google Scholar 

  • Elekes CC, Busuioc G (2010) The Mycoremediation of metals polluted soils using wild growing species of mushrooms. Lat Trends Eng Educ:36–39

    Google Scholar 

  • Eskander SB, Abd E-ASM, El-Sayaad H, Saleh HM (2012) Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem Eng. https://doi.org/10.5402/2012/329676

    Article  Google Scholar 

  • Gadd G (2001) Fungi in bioremediation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gaitán-Hernández R, Esqueda M, Gutiérrez A, Sánchez A, Beltrán-García M, Mata G (2006) Bioconversion of agrowastes by Lentinula edodes: the high potential of viticulture residues. Appl Microbiol Biotechnol 4:432–439

    Article  Google Scholar 

  • Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proceedings of the National Academy of Sciences 88(23):10605–10608

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Applied and Environmental Microbiology 64:2788–2793

    Google Scholar 

  • Isikhuemhen OS, Anoliefo G, Oghale O (2003) Bioremediation of crude oil polluted soil by the white-rot fungus, Pleurotus tuber-regium (Fr) Sing. Environ Sci Pollut Res 10:108–112

    Article  CAS  Google Scholar 

  • Jagtap VS, Sonawane VR, Pahuja DN, Rajan MG, Rajashekharrao B, Samuel AM (2003) An effective and better strategy for reducing body burden of radiostrontium. J Radiol Prot 23:317–326

    Article  CAS  Google Scholar 

  • Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 4:53–61

    Article  Google Scholar 

  • Jibran AK, MilseeMol JP (2011) Pleurotus sajor-caju Protein: a potential biosorptive agent. Advanced Biotech 4:25–27

    Google Scholar 

  • Jonathan SG, Fasidi IO, Ajayi AO, Adegeye O (2008) Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer. Bioresour Technol 4:807–811

    Article  Google Scholar 

  • Johannes C, Majcherezyk A, Hutterman A (1996) Degradation of anthracene by lacasse of Trametes versicolor in the presence different mediator compounds. Applied Microbiology and Biotechnology 46:313–317 

    Article  CAS  Google Scholar 

  • Kuforiji OO, Fasidi IO (2008) Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresour Technol 4:4275–4278

    Article  Google Scholar 

  • Kuforiji OO, Fasidi IO (2009) Biodegradation of agro-industrial wastes by an edible mushroom Pleurotus tuber-regium (Fr.). J Environ Biol 4:355–358

    Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P, Jain BL (2010) Bioremediation of industrial wastes through mushroom cultivation. J Environ Biol 4:441–444

    Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2013) Fungi as Bioremediators: soil biology. In: Goltapeh EM, Danesh YR, Varma A (eds) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. Springer, Berlin, Heidelberg, pp 77–116

    Google Scholar 

  • Kulshrestha A, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29

    Article  Google Scholar 

  • Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195

    Google Scholar 

  • Lechner BE, Papinutti VL (2006) Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem 4:594–598

    Article  Google Scholar 

  • Leonardi V, Vaclav Sasek V, Petruccioli M, D’Annibale A, Erbanova P, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeter Biodegr 60(3):165–170

    Article  CAS  Google Scholar 

  • Lin JE, Wang HY, Hickey RF (1990) Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnology and Bioengineering 35(11):1125–1134

    Article  CAS  Google Scholar 

  • Loske D, Huttermann A, Majerczk A, Zadrazil F, Lorsen H, Waldinger P (1990) Use of white rot fungi for the clean-up of contaminated sites. In: Coughlan MP, Collaco (eds) Advances in biological treatment of lignocellulosic materials. Elsevier, London, pp 311–321

    Google Scholar 

  • Luo D, Yf X, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 4:359–365

    Google Scholar 

  • Matsubara M, Lynch JM, DeLeij FAAM (2004) A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. www.aseanbiodiversity.info/Abstract/51006383.pdf. Accessed 24th July 2017

    Google Scholar 

  • Morgan P, Lewis ST, Watkinson RJ (1991) Comparison of abilities of white-rot fungus to mineralise selective xenobiotic compounds. Appl Microbiol Biotechnol 34:693–696

    Article  CAS  Google Scholar 

  • Nagy B, Măicăneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu MC (2013) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2013.08.013

    Article  CAS  Google Scholar 

  • Nigam P, Banat IM, McMullan G, Dalel S, Marchant R (1995) Microbial degradation of textile effluent containing Azo, Diazo and reactive dyes by aerobic and anaerobic bacterial and fungal cultures, 37–38. Paper presented in 36th Annu. Conf. AMI, Hisar

    Google Scholar 

  • Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lange E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36(10):1545–1551

    Article  CAS  Google Scholar 

  • Okparanma RN, Ayotamuno JM, Davis DD, Allagoa M (2011) Mycoremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated oil-based drill-cuttings. Afr J Biotechnol 10(26):5149–5156

    CAS  Google Scholar 

  • Ollikka P, Alhonmaki K, Leppanen VM, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Applied and Environmental Microbiology 59:4010–4016

    Google Scholar 

  • Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with PleurotusPulmonarius and Glomus Mosseae using AmaranthusHybridus as a test plant. J Bioremed Biodegr 4:111

    Google Scholar 

  • Ouzouni PK, Petridis D, Koller W-D, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115:1575–1580

    Article  CAS  Google Scholar 

  • Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 4:293–297

    Google Scholar 

  • Pletsch M, De Araujo BS, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17(8):679–687

    Article  CAS  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int www.ncbi.nlm.nih.gov/pubmed/22830035. Accessed 24th July 2017

    Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 4:40–44

    Article  Google Scholar 

  • Rajput Y, Shit S, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhatisgrah. J Exp Sci 4:69–72

    Google Scholar 

  • Rani P, Kalyani N, Prathiba K (2008) Evaluation of lignocellulosic wastes for production of edible mushrooms. Appl J Biochem Biotechnol 4:151–159

    Article  Google Scholar 

  • Sack U, Gunther T (1993) Metabolism of PAH by fungi and correction with extracellular enzymatic activities. J Basic Microbiol 33:269–277

    Article  CAS  Google Scholar 

  • Sasek V (2003) Why mycoremediations have not yet come into practice. In: The utilization of bioremediation to reduce soil contamination: problems and solution. Kluwer Academic Publishers, Amsterdam, pp 247–266

    Chapter  Google Scholar 

  • Sasek V, Cajthaml T (2005) Mycoremediation. Current state and perspectives. Int J Med Mushrooms 7(3):360–361

    Article  Google Scholar 

  • Sesli E, Tuzen M (1999) Level of trace elements in the fruiting bodies ofmacrofungi growing in the east black sea region of Turkey. Food Chem 65:453–460

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New York

    Book  Google Scholar 

  • Stamets PE (2010) Mycoremediation and Its Applications to Oil Spills. www.realitysandwich.com/mycoremediation_and_oil_spill

  • Stella T, Covino S, Křesinová Z, D’Annibale A, Petruccioli M, Cajthaml T (2012) Mycoremidiation of PCBs dead-end metabolites: In vivo and In vitro degradation of chlorobenzoic acids by the white rot fungus Lentinus tigrinus. Environ Eng Manag J 11(3)

    Google Scholar 

  • Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant Anim Environ Sci 4:193–203

    Google Scholar 

  • Sykes C (2002) Magical Mushrooms: Mycoremediation. www.realitysandwich.com/mycoremediation_and_oil_spills

  • Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low- molecular–weight substance and phenol oxidase activities during wood degradation by the white–rot basidiomycetes Trametes versicolor. J Biotechnol 75(1):57–70

    Article  CAS  Google Scholar 

  • Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 4:825–830

    Article  Google Scholar 

  • Thakur M (2014) Mycoremediation—a potential tool to control soil pollution. Asian J Environ Sci 9(1):24–31

    Google Scholar 

  • Thakur M (2015) Wild mushrooms as natural untapped treasures. In: Chauhan AK, Pushpangadan P, George V (eds) Natural products: recent advances. Write & Print Publications, New Delhi, pp 214–226

    Google Scholar 

  • Thomas SA, Aston LM, Woodruff DL, Cullinan VI (2009) Field demonstration of Mycoremediation for removal of Fecal coliform Bacteria and nutrients in the Dungeness watershed, Washington. Pacific Northwest National Laboratory, Richland, Washington

    Google Scholar 

  • Tismal M, Zelic B, Vasic-Racki D (2010) White-rot fungi in phenols, dyes and other xenobiotics treatment – a brief review. Croatian J Food Sci Technol 2(2):34–47

    Google Scholar 

  • Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 4:1079–1083

    Article  Google Scholar 

  • Vanaken B, Godefroid L, Peres C, Naveau H, Agathos S (1999) Mineralization of C-U-ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete. Journal of Biotechnology 68(2-3):159–169

    Article  CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    Article  CAS  Google Scholar 

  • Williams RT, Ziegenfuss PS, Sisk WE (1992) Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol Biotechnol 9(2):137–144

    Google Scholar 

  • Zhu MJ, Du F, Zhang GQ, Wang HX, Ng TB (2013) Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int Biodeterior Biodegrad 4:33–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Thakur .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, M. (2019). Mushrooms as a Biological Tool in Mycoremediation of Polluted Soils. In: Emerging Issues in Ecology and Environmental Science. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-99398-0_3

Download citation

Publish with us

Policies and ethics