Skip to main content

Predicting Confidence Interval for the Proportion at the Time of Study Planning in Small Clinical Trials

  • Chapter
  • First Online:
Book cover New Frontiers of Biostatistics and Bioinformatics

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 1057 Accesses

Abstract

Confidence intervals are commonly used to assess the precision of parameter estimations. Particularly in small clinical trials, such assessment may be used in place of a power calculation. We discuss `future' confidence interval prediction with binomial outcomes for small clinical trials and sample size calculation, where the term `future' confidence interval emphasizes the confidence interval as a function of a random sample that is not observed at the planning stage of a study. We propose and discuss three probabilistic approaches to future confidence interval prediction when the sample size is small. We demonstrate substantial differences among these approaches in terms of the interval width prediction and sample size calculation. We show that the approach based on the expectation of the boundaries has the most desirable properties and is easy to implement. In this chapter, we primarily discuss prediction of the Clopper-Pearson exact confidence interval, and then extend our discussion to other confidence interval methods. In particular, we discuss the arcsine transformation as a viable alternative to the exact confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A., & Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician, 52(2), 119–126.

    MathSciNet  Google Scholar 

  • Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative-binomial data. Biometrika, 35(3/4), 246–254.

    Article  MathSciNet  Google Scholar 

  • Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canadian Journal of Statistics, 28(4), 783–798.

    Article  MathSciNet  Google Scholar 

  • Blyth, C. R., & Still, H. A. (1983). Binomial confidence intervals. Journal of the American Statistical Association, 78(381), 108–116.

    Article  MathSciNet  Google Scholar 

  • Bougnoux, P., Hajjaji, N., Ferrasson, M. N., Giraudeau, B., Couet, C., & Le Floch, O. (2009). Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: A phase II trial. British Journal of Cancer, 101(12), 1978–1985.

    Article  Google Scholar 

  • Breiman, L. (1992). Probability. Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16, 101–117.

    MathSciNet  MATH  Google Scholar 

  • Chang, M. N., & O’Brien, P. C. (1986). Confidence intervals following group sequential tests. Controlled Clinical Trials, 7(1), 18–26.

    Article  Google Scholar 

  • Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26(4), 404–413.

    Article  Google Scholar 

  • Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the square root. The Annals of Mathematical Statistics, 21, 607–611.

    Article  MathSciNet  Google Scholar 

  • Levy, E. I., Ecker, R. D., Horowitz, M. B., Gupta, R., Hanel, R. A., Sauvageau, E., et al. (2006). Stent-assisted intracranial recanalization for acute stroke: Early results. Neurosurgery, 58(3), 458–463.

    Article  Google Scholar 

  • Martin-Schild, S., Hallevi, H., Shaltoni, H., Barreto, A. D., Gonzales, N. R., Aronowski, J., et al. (2009). Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: A pilot study of caffeinol and mild hypothermia. Journal of Stroke and Cerebrovascular Diseases, 18(2), 86–96.

    Article  Google Scholar 

  • Newcombe, R. G., & Vollset, S. E. (1994). Confidence intervals for a binomial proportion. Statistics in Medicine, 13(12), 1283–1285.

    Article  Google Scholar 

  • Pires, A. M., & Amado, C. (2008). Interval estimators for a binomial proportion: Comparison of twenty methods. REVSTAT–Statistical Journal, 6(2), 165–197.

    MathSciNet  MATH  Google Scholar 

  • Rao, C. R. (1973). Linear statistical inference and its applications. New York: Wiley.

    Book  Google Scholar 

  • Rino, Y., Yukawa, N., Murakami, H., Wada, N., Yamada, R., Hayashi, T., et al. (2010). A phase II study of S-1 monotherapy as a first-line combination therapy of S-1 plus cisplatin as a second-line therapy, and weekly paclitaxel monotherapy as a third-line therapy in patients with advanced gastric carcinoma: A second report. Clinical Medicine Insights: Oncology, 4, CMO-S3920.

    Article  Google Scholar 

  • Sahai, H., & Ageel, M. I. (2000). Analysis of variance: Fixed, random and mixed models. Ann Arbor, MI: Sheridan Books.

    Book  Google Scholar 

  • Schiffer, F., Johnston, A. L., Ravichandran, C., Polcari, A., Teicher, M. H., Webb, R. H., et al. (2009). Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety. Behavioral and Brain Functions, 5(1), 46.

    Article  Google Scholar 

  • Smith, W. S., Sung, G., Starkman, S., Saver, J. L., Kidwell, C. S., Gobin, Y. P., et al. (2005). Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke, 36(7), 1432–1438.

    Article  Google Scholar 

  • Sokalr, R. R., & Rohlf, F. J. B. (1981). The principles and practice of statistics in biological research. New York: WH Freeman.

    Google Scholar 

  • Stallard, N. (1998). Sample size determination for phase II clinical trials based on Bayesian decision theory. Biometrics, 54, 279–294.

    Article  MathSciNet  Google Scholar 

  • TIMI Study Group*. (1985). The thrombolysis in myocardial infarction (TIMI) trial: Phase I findings. New England Journal of Medicine, 312(14), 932–936.

    Article  Google Scholar 

  • Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine, 12(9), 809–824.

    Article  Google Scholar 

  • Wang, W. (2014). An iterative construction of confidence intervals for a proportion. Statistica Sinica, 24, 1389–1410.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihnhee Yu .

Editor information

Editors and Affiliations

Appendix

Appendix

The following R codes are to calculate the predicted width of confidence intervals proposed in Sects. 11.2 and 11.3. The parameters needed are n, p, and alpha for the sample size, true success rate, and 100(1-alpha)% confidence interval. The results of each function consist of predicted lower, upper bounds, and width.

R codes for Sect. 11.2

#####Approach 1###### approach1<-function(n,p,alpha){ x<-n*p lc<-1/(1+(n-x+1)/(x*qf(0.025,2*x,2*(n-x+1)))) rc<-1/(1+(n-x)/((x+1)*qf(0.975,2*(x+1),2*(n-x)))) cat(round(lc,4),round(rc,4),round((rc-lc),4), fill=T) } #Usage approach1(20,0.07,0.05) #####Approach 2-1#### approach2.1<-function(n,p,alpha){ x<-seq(0,n,1) probs<-pbinom(x,n,p) L<-max(x[probs<=(alpha/2)],-0.5)+0.5 U<-min(min(x[probs>=(1-alpha/2)])+1-0.5,n) cat(round(L/n,4),round(U/n,4), round((U/n-L/n),4), fill=T) } #Usage approach2.1(20,0.07,0.05) #####Approach 2-2#### #Functions to solve Eq. (11.6) incbetaL<-function(x,p,n,alpha){ duhaeyo<-0 ele1<-x+1 ele2<-n for(i in ele1:ele2){ duhaeyo<-duhaeyo+factorial(ele2)/(factorial(i)*factorial (ele2-i))* p^i*(1-p)^(ele2-i) } crit<-abs(duhaeyo-(1-alpha/2)) return(crit) } incbetaU<-function(x,p,n,alpha){ duhaeyo<-0 ele1<-x ele2<-n for(i in ele1:ele2){ duhaeyo<-duhaeyo+factorial(ele2)/(factorial(i)*factorial (ele2-i))* p^i*(1-p)^(ele2-i) } crit<-abs(duhaeyo-(alpha/2)) return(crit) } approach2.2<-function(nn,pp,alphaa){ nval<-nn pval<-pp alphaval<-alphaa x<-nval*pval clow<-1/(1+(nval-x+1)/(x*qf((alphaval/2),2*x,2*(nval-x+1)))) cupp<-1/(1+(nval-x)/((x+1)*qf((1-alphaval/2),2*(x+1), 2*(nval-x)))) lowval<-optimize(incbetaL, c(((clow-0.1)*nval), ((clow+0.1)*nval)),p=pval, n=nval, tol = 0.0001, alpha=alphaval) uppval<-optimize(incbetaU, c(((cupp-0.1)*nval), ((cupp+0.1)*nval)),p=pval, n=nval, tol = 0.0001, alpha=alphaval) lc<-max(lowval[[1]]/nval,0) rc<-min(uppval[[1]]/nval,1) cat(c(lc,rc,(rc-lc))) } #Usage approach2.2(20,0.07,0.05) ####Approach 3####### approach3<-function(n,p,alpha){ truep<-p x<-seq(0,n,1) probs<-dbinom(x,n,truep) counts<-0 clc<-c() crc<-c() for(i in 1:(n+1)){ lc<-binom.test(x[i], n, conf.level = (1-alpha))$conf.int[1] rc<-binom.test(x[i], n, conf.level = (1-alpha))$conf.int[2] clc<-c(clc,lc*probs[i]) crc<-c(crc,rc*probs[i]) } cat(round(sum(clc),4),round(sum(crc),4),round((sum(crc)-sum(clc)), 4), fill=T) } #Usage approach3(20,0.07,0.05)

R codes for Sect. 11.3

#Approach 1 approach1<-function(n,p,alpha){ c<-qnorm((1-alpha/2)) x<-n*p lc<-max(sin(asin(sqrt((3/8+x)/(n+3/4)))-c/(2*sqrt(n)))^2,0) rc<-min(sin(asin(sqrt((3/8+x)/(n+3/4)))+c/(2*sqrt(n)))^2,1) cat(round(lc,4),round(rc,4),round((rc-lc),4)) } #Approach 2 approach2<-function(n,p,alpha){ c<-qnorm((1-alpha/2)) lc<-max(((sin(asin(sqrt(p))-c/(2*sqrt(n)))^2)*(1+3/(4*n)) -3/(8*n)),0) rc<-min(((sin(asin(sqrt(p))+c/(2*sqrt(n)))^2)*(1+3/(4*n)) -3/(8*n)),1) cat(round(lc,4),round(rc,4),round((rc-lc),4)) } #Approach 3 approach3<-function(n,p,alpha){ c<-qnorm((1-alpha/2)) truep<-p x<-seq(0,n,1) probs<-dbinom(x,n,truep) counts<-0 clc<-c() crc<-c() for(i in 1:length(probs)){ lc<-max(sin(asin(sqrt((3/8+x[i])/(n+3/4)))-c/(2*sqrt(n)))^2,0) rc<-min(sin(asin(sqrt((3/8+x[i])/(n+3/4)))+c/(2*sqrt(n)))^2,1) clc<-c(clc,lc*probs[i]) crc<-c(crc,rc*probs[i]) } crc<-c(crc,1*probs[(n+1)]) cat(round(sum(clc),4),round(sum(crc),4),round((sum(crc) -sum(clc)),4)) }

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Vexler, A. (2018). Predicting Confidence Interval for the Proportion at the Time of Study Planning in Small Clinical Trials. In: Zhao, Y., Chen, DG. (eds) New Frontiers of Biostatistics and Bioinformatics. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-99389-8_11

Download citation

Publish with us

Policies and ethics