Skip to main content

The Kantorovich Problem and Wasserstein Metric in the Theory of Belief Functions

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11069))

Included in the following conference series:

  • 510 Accesses

Abstract

The aim of this paper is to show that the Kantorovich problem, well known in models of economics and very intensively studied in probability theory in recent years, can be viewed as the basis of some constructions in the theory of belief functions. We demonstrate this by analyzing specialization relation for finitely defined belief functions and belief functions defined on reals. In addition, for such belief functions we consider the Wasserstein metric and study its connections to disjunctions of belief functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proof of this proposition is based on Ford-Fulkerson Theorem for the network flow problem and it is omitted because of the required format of the paper.

References

  1. Smets, P.: Decision making in a context where uncertainty is represented by belief functions. In: Srivastava, R.P., Mock, T.J. (eds.) Belief Functions in Business Decisions, pp. 17–61. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1798-0_2

    Chapter  MATH  Google Scholar 

  2. Denoeux, T.: A \(k\)-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. SMC 25(5), 804–813 (1995)

    Google Scholar 

  3. Bronevich, A.G., Lepskiy, A.E., Penikas, H.I.: Coherence analysis of financial analysts’ recommendations in the framework of evidence theory. CEUR-Workshop 1687, 12–23 (2016)

    Google Scholar 

  4. Kutynina, E., Lepskiy, A.: Aggregation of forecasts and recommendations of financial analysts in the framework of evidence theory. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT - 2017. AISC, vol. 642, pp. 370–381. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66824-6_33

    Chapter  Google Scholar 

  5. Bloch, I.: Defining belief functions using mathematical morphology - application to image fusion under imprecision. Int. J. Approximate Reasoning 48, 437–465 (2008)

    Article  MathSciNet  Google Scholar 

  6. Lin, T.-C.: Partition belief median filter based on Dempster-Shafer theory in image processing. Patt. Recogn. 41, 139–151 (2008)

    Article  Google Scholar 

  7. Lin, T.-C.: Decision-based filter based on SVM and evidence theory for image noise removal. Neural Comput. Appl. 21, 685–793 (2012)

    Article  Google Scholar 

  8. Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  9. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Smets, P.: Belief functions on real numbers. Int. J. Approximate Reasoning 40(3), 181–223 (2005)

    Article  MathSciNet  Google Scholar 

  11. Kantorovich, L.V.: On mass moving. Dokl. Akad. Nauk SSSR 37(7–8), 227–229 (1942)

    Google Scholar 

  12. Bogachev, V.I., Kolesnikov, A.V.: The Monge-Kantorovich problem: achievements, connections, and perspectives. Russ. Math. Surv. 67(5), 1–110 (2012)

    Article  Google Scholar 

  13. Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31(2), 231–240 (1984)

    Article  MathSciNet  Google Scholar 

  14. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth Mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  15. Bronevich, A.G., Rozenberg, I.N.: The choice of generalized Dempster-Shafer rules for aggregating belief functions. Int. J. Approximate Reasoning 56, 122–136 (2015)

    Article  MathSciNet  Google Scholar 

  16. Bronevich, A.G., Spiridenkova, N.S.: Measuring uncertainty for interval belief structures and its application for analyzing weather forecasts. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017. Advances in Intelligent Systems and Computing, vol. 641, pp. 273–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66830-7_25

    Chapter  Google Scholar 

  17. Han, D., Dezert, J., Yang, Y.: New distance measures of evidence based on belief intervals. In: Cuzzolin, F. (ed.) BELIEF 2014. LNCS (LNAI), vol. 8764, pp. 432–441. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11191-9_47

    Chapter  Google Scholar 

  18. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. Int. J. Gen. Syst. 12(3), 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  19. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

Download references

Acknowledgment

This work has been supported by the grant 18-01-00877 of RFBR (Russian Foundation for Basic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey G. Bronevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bronevich, A.G., Rozenberg, I.N. (2018). The Kantorovich Problem and Wasserstein Metric in the Theory of Belief Functions. In: Destercke, S., Denoeux, T., Cuzzolin, F., Martin, A. (eds) Belief Functions: Theory and Applications. BELIEF 2018. Lecture Notes in Computer Science(), vol 11069. Springer, Cham. https://doi.org/10.1007/978-3-319-99383-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99383-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99382-9

  • Online ISBN: 978-3-319-99383-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics