Skip to main content

The Estrogen-Regulated Transcriptome: Rapid, Robust, Extensive, and Transient

  • Chapter
  • First Online:
Estrogen Receptor and Breast Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The steroid hormone estrogen has potent effects in a variety of tissues across the body in both females and males. In the nuclear signaling pathway for estrogens, the hormone acts by stimulating the DNA binding and transcriptional activity of estrogen receptors (ERs), transcription factors which robustly and transiently regulate the expression of target genes. More broadly, estrogen signaling controls the ER cistrome, as well as the epigenome and the estrogen-regulated transcriptome. A host of deep sequencing-based genomic assays have provided novel insights into the mechanisms by which ERs regulate transcriptional responses. Estrogen-dependent transcriptional responses have been studied widely in breast cancer cells, primarily in the context of the ER alpha (ERα) isoform. These studies have revealed an intricate cross talk between the estrogen-ERα signaling pathway and other signaling pathways, impacting transcriptional programs and clinical outcomes in breast cancer. This chapter reviews the key features of ERα-regulated transcription and the current technological advances that have allowed for the careful dissection of these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20(3):358–417. https://doi.org/10.1210/edrv.20.3.0370

    Article  CAS  PubMed  Google Scholar 

  2. Warner M, Nilsson S, Gustafsson JA (1999) The estrogen receptor family. Curr Opin Obstet Gynecol 11(3):249–254

    Article  CAS  PubMed  Google Scholar 

  3. Welboren WJ, Sweep FC, Span PN, Stunnenberg HG (2009) Genomic actions of estrogen receptor alpha: what are the targets and how are they regulated? Endocr Relat Cancer 16(4):1073–1089. https://doi.org/10.1677/ERC-09-0086

    Article  CAS  PubMed  Google Scholar 

  4. Fan W, Chang J, Fu P (2015) Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med Chem 7(12):1511–1519. https://doi.org/10.4155/fmc.15.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Madak-Erdogan Z, Lupien M, Stossi F, Brown M, Katzenellenbogen BS (2011) Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol Cell Biol 31(1):226–236. https://doi.org/10.1128/MCB.00821-10

    Article  CAS  PubMed  Google Scholar 

  6. Madak-Erdogan Z, Gong P, Katzenellenbogen BS (2016) Differential utilization of nuclear and extranuclear receptor signaling pathways in the actions of estrogens, SERMs, and a tissue-selective estrogen complex (TSEC). J Steroid Biochem Mol Biol 158:198–206. https://doi.org/10.1016/j.jsbmb.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  7. Adlanmerini M, Solinhac R, Abot A, Fabre A, Raymond-Letron I, Guihot AL, Boudou F, Sautier L, Vessieres E, Kim SH, Liere P, Fontaine C, Krust A, Chambon P, Katzenellenbogen JA, Gourdy P, Shaul PW, Henrion D, Arnal JF, Lenfant F (2014) Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci U S A 111(2):E283–E290. https://doi.org/10.1073/pnas.1322057111

    Article  CAS  PubMed  Google Scholar 

  8. Meitzen J, Luoma JI, Boulware MI, Hedges VL, Peterson BM, Tuomela K, Britson KA, Mermelstein PG (2013) Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 154(11):4293–4304. https://doi.org/10.1210/en.2013-1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16(1):231–237. https://doi.org/10.1091/mbc.E04-07-0547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Filardo EJ, Thomas P (2012) Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology 153(7):2953–2962. https://doi.org/10.1210/en.2012-1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122(1):33–43. https://doi.org/10.1016/j.cell.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  12. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297. https://doi.org/10.1038/ng1901

    Article  CAS  PubMed  Google Scholar 

  13. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F, Yeo A, George J, Kuznetsov VA, Lee YK, Charn TH, Palanisamy N, Miller LD, Cheung E, Katzenellenbogen BS, Ruan Y, Bourque G, Wei CL, Liu ET (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3(6):e87. https://doi.org/10.1371/journal.pgen.0030087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hewitt SC, Li L, Grimm SA, Chen Y, Liu L, Li Y, Bushel PR, Fargo D, Korach KS (2012) Research resource: whole-genome estrogen receptor alpha binding in mouse uterine tissue revealed by ChIP-seq. Mol Endocrinol 26(5):887–898. https://doi.org/10.1210/me.2011-1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Welboren WJ, van Driel MA, Janssen-Megens EM, van Heeringen SJ, Sweep FC, Span PN, Stunnenberg HG (2009) ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J 28(10):1418–1428. https://doi.org/10.1038/emboj.2009.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stender JD, Kim K, Charn TH, Komm B, Chang KC, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS (2010) Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30(16):3943–3955. https://doi.org/10.1128/MCB.00118-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heldring N, Isaacs GD, Diehl AG, Sun M, Cheung E, Ranish JA, Kraus WL (2011) Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol Endocrinol 25(4):564–574. https://doi.org/10.1210/me.2010-0425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan SK, Lin ZH, Chang CW, Varang V, Chng KR, Pan YF, Yong EL, Sung WK, Cheung E (2011) AP-2gamma regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription. EMBO J 30(13):2569–2581. https://doi.org/10.1038/emboj.2011.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43(1):27–33. https://doi.org/10.1038/ng.730

    Article  CAS  PubMed  Google Scholar 

  20. Acevedo ML, Kraus WL (2004) Transcriptional activation by nuclear receptors. Essays Biochem 40:73–88

    Article  CAS  PubMed  Google Scholar 

  21. Biddie SC, John S, Hager GL (2010) Genome-wide mechanisms of nuclear receptor action. Trends Endocrinol Metab 21(1):3–9. https://doi.org/10.1016/j.tem.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  22. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    CAS  PubMed  Google Scholar 

  23. Lonard DM, O’Malley BW (2012) Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol 8(10):598–604. https://doi.org/10.1038/nrendo.2012.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foulds CE, Feng Q, Ding C, Bailey S, Hunsaker TL, Malovannaya A, Hamilton RA, Gates LA, Zhang Z, Li C, Chan D, Bajaj A, Callaway CG, Edwards DP, Lonard DM, Tsai SY, Tsai MJ, Qin J, O’Malley BW (2013) Proteomic analysis of coregulators bound to ERalpha on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 51(2):185–199. https://doi.org/10.1016/j.molcel.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hah N, Murakami S, Nagari A, Danko CG, Kraus WL (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23(8):1210–1223. https://doi.org/10.1101/gr.152306.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64. https://doi.org/10.1038/nature08497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levine M, Cattoglio C, Tjian R (2014) Looping back to leap forward: transcription enters a new era. Cell 157(1):13–25. https://doi.org/10.1016/j.cell.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plank JL, Dean A (2014) Enhancer function: mechanistic and genome-wide insights come together. Mol Cell 55(1):5–14. https://doi.org/10.1016/j.molcel.2014.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL (2011) A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145(4):622–634. https://doi.org/10.1016/j.cell.2011.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hah N, Kraus WL (2014) Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 382(1):652–664. https://doi.org/10.1016/j.mce.2013.06.021

    Article  CAS  PubMed  Google Scholar 

  31. McDevitt MA, Glidewell-Kenney C, Jimenez MA, Ahearn PC, Weiss J, Jameson JL, Levine JE (2008) New insights into the classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol 290(1–2):24–30. https://doi.org/10.1016/j.mce.2008.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU (1986) An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46(7):1053–1061

    Article  CAS  PubMed  Google Scholar 

  33. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29(14):2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    Article  CAS  PubMed  Google Scholar 

  35. Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269(17):12940–12946

    CAS  PubMed  Google Scholar 

  36. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74(5):311–317

    Article  CAS  PubMed  Google Scholar 

  37. Lazennec G, Thomas JA, Katzenellenbogen BS (2001) Involvement of cyclic AMP response element binding protein (CREB) and estrogen receptor phosphorylation in the synergistic activation of the estrogen receptor by estradiol and protein kinase activators. J Steroid Biochem Mol Biol 77(4–5):193–203

    Article  CAS  PubMed  Google Scholar 

  38. Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166(3):538–554. https://doi.org/10.1016/j.cell.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  39. Fiorito E, Katika MR, Hurtado A (2013) Cooperating transcription factors mediate the function of estrogen receptor. Chromosoma 122(1–2):1–12. https://doi.org/10.1007/s00412-012-0392-7

    Article  CAS  PubMed  Google Scholar 

  40. Pradeepa MM (2017) Causal role of histone acetylations in enhancer function. Transcription 8(1):40–47. https://doi.org/10.1080/21541264.2016.1253529

    Article  CAS  PubMed  Google Scholar 

  41. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. https://doi.org/10.1038/ng1966

    Article  CAS  PubMed  Google Scholar 

  42. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107(50):21931–21936. https://doi.org/10.1073/pnas.1016071107

    Article  PubMed  PubMed Central  Google Scholar 

  43. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231):854–858. https://doi.org/10.1038/nature07730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Magnani L, Stoeck A, Zhang X, Lanczky A, Mirabella AC, Wang TL, Gyorffy B, Lupien M (2013) Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 110(16):E1490–E1499. https://doi.org/10.1073/pnas.1219992110

    Article  PubMed  PubMed Central  Google Scholar 

  45. Melgar MF, Collins FS, Sethupathy P (2011) Discovery of active enhancers through bidirectional expression of short transcripts. Genome Biol 12(11):R113. https://doi.org/10.1186/gb-2011-12-11-r113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. https://doi.org/10.1146/annurev-genet-110711-155459

    Article  CAS  PubMed  Google Scholar 

  47. Liu MH, Cheung E (2014) Estrogen receptor-mediated long-range chromatin interactions and transcription in breast cancer. Mol Cell Endocrinol 382(1):624–632. https://doi.org/10.1016/j.mce.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  48. Heinz S, Romanoski CE, Benner C, Glass CK (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16(3):144–154. https://doi.org/10.1038/nrm3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G (2013) Enhancers: five essential questions. Nat Rev Genet 14(4):288–295. https://doi.org/10.1038/nrg3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O’Malley BW (2015) Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell 57(6):1047–1058. https://doi.org/10.1016/j.molcel.2015.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, Gannon F (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115(6):751–763

    Article  CAS  PubMed  Google Scholar 

  52. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85(3):403–414

    Article  CAS  PubMed  Google Scholar 

  53. Acevedo ML, Kraus WL (2003) Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor alpha-dependent transcription with chromatin templates. Mol Cell Biol 23(1):335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim MY, Hsiao SJ, Kraus WL (2001) A role for coactivators and histone acetylation in estrogen receptor alpha-mediated transcription initiation. EMBO J 20(21):6084–6094. https://doi.org/10.1093/emboj/20.21.6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21(15):4094–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen W, Roeder RG (2011) Mediator-dependent nuclear receptor function. Semin Cell Dev Biol 22(7):749–758. https://doi.org/10.1016/j.semcdb.2011.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772. https://doi.org/10.1038/nrg2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Plaschka C, Nozawa K, Cramer P (2016) Mediator architecture and RNA polymerase II interaction. J Mol Biol 428(12):2569–2574. https://doi.org/10.1016/j.jmb.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  59. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501. https://doi.org/10.1038/nature11884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Foulds CE, Feng Q, Ding C, Bailey S, Hunsaker TL, Malovannaya A, Hamilton RA, Gates LA, Zhang Z, Li C, Chan D, Bajaj A, Callaway CG, Edwards DP, Lonard DM, Tsai SY, Tsai MJ, Qin J, O’Malley BW (2013) Proteomic analysis of coregulators bound to ERα on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 51(2):185–199. https://doi.org/10.1016/j.molcel.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  62. Coleman KM, Lam V, Jaber BM, Lanz RB, Smith CL (2004) SRA coactivation of estrogen receptor-alpha is phosphorylation-independent, and enhances 4-hydroxytamoxifen agonist activity. Biochem Biophys Res Commun 323(1):332–338. https://doi.org/10.1016/j.bbrc.2004.08.090

    Article  CAS  PubMed  Google Scholar 

  63. Deblois G, Giguere V (2003) Ligand-independent coactivation of ERalpha AF-1 by steroid receptor RNA activator (SRA) via MAPK activation. J Steroid Biochem Mol Biol 85(2–5):123–131

    Article  CAS  PubMed  Google Scholar 

  64. Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262. https://doi.org/10.1038/emboj.2010.318

    Article  CAS  PubMed  Google Scholar 

  65. Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, Diaz MO, Scacheri PC, Harte PJ (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136(18):3131–3141. https://doi.org/10.1242/dev.037127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bose DA, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger SL (2017) RNA binding to CBP stimulates histone acetylation and transcription. Cell 168(1–2):135–149 e122. https://doi.org/10.1016/j.cell.2016.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murakami S, Nagari A, Kraus WL (2017) Dynamic assembly and activation of estrogen receptor alpha enhancers through coregulator switching. Genes Dev 31(15):1535–1548. https://doi.org/10.1101/gad.302182.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319. https://doi.org/10.1146/annurev.bi.60.070191.001433

    Article  CAS  PubMed  Google Scholar 

  69. Winkles JA (1998) Serum- and polypeptide growth factor-inducible gene expression in mouse fibroblasts. Prog Nucleic Acid Res Mol Biol 58:41–78

    Article  CAS  PubMed  Google Scholar 

  70. Kininis M, Isaacs GD, Core LJ, Hah N, Kraus WL (2009) Postrecruitment regulation of RNA polymerase II directs rapid signaling responses at the promoters of estrogen target genes. Mol Cell Biol 29(5):1123–1133. https://doi.org/10.1128/MCB.00841-08

    Article  CAS  PubMed  Google Scholar 

  71. Liu X, Kraus WL, Bai X (2015) Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 40(9):516–525. https://doi.org/10.1016/j.tibs.2015.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848. https://doi.org/10.1126/science.1162228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  74. Kraus WL (2015) Editorial: would you like a hypothesis with those data? Omics and the age of discovery science. Mol Endocrinol 29(11):1531–1534. https://doi.org/10.1210/me.2015-1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calviello L, Ohler U (2017) Beyond read-counts: Ribo-seq data analysis to understand the functions of the transcriptome. Trends Genet 33(10):728–744. https://doi.org/10.1016/j.tig.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  76. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5):299–311. https://doi.org/10.1038/nrg3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM (2006) Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 3(9):715–719. https://doi.org/10.1038/nmeth924

    Article  CAS  PubMed  Google Scholar 

  78. Kininis M, Kraus WL (2008) A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 6:e005

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheung E, Kraus WL (2010) Genomic analyses of hormone signaling and gene regulation. Annu Rev Physiol 72:191–218. https://doi.org/10.1146/annurev-physiol-021909-135840

    Article  CAS  PubMed  Google Scholar 

  80. Carroll JS, Brown M (2006) Estrogen receptor target gene: an evolving concept. Mol Endocrinol 20(8):1707–1714. https://doi.org/10.1210/me.2005-0334

    Article  CAS  PubMed  Google Scholar 

  81. Zhang J, Poh HM, Peh SQ, Sia YY, Li G, Mulawadi FH, Goh Y, Fullwood MJ, Sung WK, Ruan X, Ruan Y (2012) ChIA-PET analysis of transcriptional chromatin interactions. Methods 58(3):289–299. https://doi.org/10.1016/j.ymeth.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  82. Welboren WJ, Stunnenberg HG, Sweep FC, Span PN (2007) Identifying estrogen receptor target genes. Mol Oncol 1(2):138–143. https://doi.org/10.1016/j.molonc.2007.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  83. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  84. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. https://doi.org/10.1073/pnas.191367098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  86. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. https://doi.org/10.1038/415530a

    Article  Google Scholar 

  87. Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5(9):R66. https://doi.org/10.1186/gb-2004-5-9-r66

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5(10):2929–2943

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Franco HL, Nagari A, Kraus WL (2015) TNFalpha signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell 58(1):21–34. https://doi.org/10.1016/j.molcel.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mahat DB, Kwak H, Booth GT, Jonkers IH, Danko CG, Patel RK, Waters CT, Munson K, Core LJ, Lis JT (2016) Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat Protoc 11(8):1455–1476. https://doi.org/10.1038/nprot.2016.086

    Article  PubMed  PubMed Central  Google Scholar 

  91. Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50(2):212–222. https://doi.org/10.1016/j.molcel.2013.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chae M, Danko CG, Kraus WL (2015) groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics 16:222. https://doi.org/10.1186/s12859-015-0656-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun M, Gadad SS, Kim DS, Kraus WL (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell 59(4):698–711. https://doi.org/10.1016/j.molcel.2015.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8(5):e1000384. https://doi.org/10.1371/journal.pbio.1000384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187. https://doi.org/10.1038/nature09033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Fu XD (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351):390–394. https://doi.org/10.1038/nature10006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, Lee CY, Watt A, Grossman TR, Rosenfeld MG, Evans RM, Glass CK (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515. https://doi.org/10.1038/nature12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520. https://doi.org/10.1038/nature12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, Sun T, Sweeney CJ, Lee GS, Chen S, Balk SP, Liu XS, Brown M, Kantoff PW (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A 111(20):7319–7324. https://doi.org/10.1073/pnas.1324151111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drablos F, Lennartsson A, Ronnerblad M, Hrydziuszko O, Vitezic M, Freeman TC, Alhendi AM, Arner P, Axton R, Baillie JK, Beckhouse A, Bodega B, Briggs J, Brombacher F, Davis M, Detmar M, Ehrlund A, Endoh M, Eslami A, Fagiolini M, Fairbairn L, Faulkner GJ, Ferrai C, Fisher ME, Forrester L, Goldowitz D, Guler R, Ha T, Hara M, Herlyn M, Ikawa T, Kai C, Kawamoto H, Khachigian LM, Klinken SP, Kojima S, Koseki H, Klein S, Mejhert N, Miyaguchi K, Mizuno Y, Morimoto M, Morris KJ, Mummery C, Nakachi Y, Ogishima S, Okada-Hatakeyama M, Okazaki Y, Orlando V, Ovchinnikov D, Passier R, Patrikakis M, Pombo A, Qin XY, Roy S, Sato H, Savvi S, Saxena A, Schwegmann A, Sugiyama D, Swoboda R, Tanaka H, Tomoiu A, Winteringham LN, Wolvetang E, Yanagi-Mizuochi C, Yoneda M, Zabierowski S, Zhang P, Abugessaisa I, Bertin N, Diehl AD, Fukuda S, Furuno M, Harshbarger J, Hasegawa A, Hori F, Ishikawa-Kato S, Ishizu Y, Itoh M, Kawashima T, Kojima M, Kondo N, Lizio M, Meehan TF, Mungall CJ, Murata M, Nishiyori-Sueki H, Sahin S, Nagao-Sato S, Severin J, de Hoon MJ, Kawai J, Kasukawa T, Lassmann T, Suzuki H, Kawaji H, Summers KM, Wells C, Consortium F, Hume DA, Forrest AR, Sandelin A, Carninci P, Hayashizaki Y (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347(6225):1010–1014. https://doi.org/10.1126/science.1259418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fang B, Everett LJ, Jager J, Briggs E, Armour SM, Feng D, Roy A, Gerhart-Hines Z, Sun Z, Lazar MA (2014) Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159(5):1140–1152. https://doi.org/10.1016/j.cell.2014.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mousavi K, Zare H, Dell’orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager GL, Sartorelli V (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51(5):606–617. https://doi.org/10.1016/j.molcel.2013.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li W, Notani D, Rosenfeld MG (2016) Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 17(4):207–223. https://doi.org/10.1038/nrg.2016.4

    Article  CAS  PubMed  Google Scholar 

  104. Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470(7333):187–197. https://doi.org/10.1038/nature09792

    Article  CAS  PubMed  Google Scholar 

  105. Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, Rozowsky JS, Gerstein MB, Wahlestedt C, Hayashizaki Y, Carninci P, Gingeras TR, Mattick JS (2011) The reality of pervasive transcription. PLoS Biol 9(7):e1000625.; discussion e1001102. https://doi.org/10.1371/journal.pbio.1000625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112. https://doi.org/10.1038/nature07829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15(4):272–286. https://doi.org/10.1038/nrg3682

    Article  CAS  PubMed  Google Scholar 

  108. Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837. https://doi.org/10.1016/j.molcel.2013.01.038

    Article  CAS  PubMed  Google Scholar 

  109. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, Margulies EH, Chen Y, Bernat JA, Ginsburg D, Zhou D, Luo S, Vasicek TJ, Daly MJ, Wolfsberg TG, Collins FS (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16(1):123–131. https://doi.org/10.1101/gr.4074106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, Crawford GE, Furey TS (2013) Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res 23(5):777–788. https://doi.org/10.1101/gr.152140.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT (2014) Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 46(12):1311–1320. https://doi.org/10.1038/ng.3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Franco HL, Nagari A, Malladi VS, Li W, Xi Y, Richardson D, Allton KL, Tanaka K, Li J, Murakami S, Keyomarsi K, Bedford MT, Shi X, Li W, Barton MC, Dent SYR, Kraus WL (2018) Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res 28(2):159–170. https://doi.org/10.1101/gr.226019.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ince BA, Zhuang Y, Wrenn CK, Shapiro DJ, Katzenellenbogen BS (1993) Powerful dominant negative mutants of the human estrogen receptor. J Biol Chem 268(19):14026–14032

    CAS  PubMed  Google Scholar 

  114. Schodin DJ, Zhuang Y, Shapiro DJ, Katzenellenbogen BS (1995) Analysis of mechanisms that determine dominant negative estrogen receptor effectiveness. J Biol Chem 270(52):31163–31171

    Article  CAS  PubMed  Google Scholar 

  115. Acevedo ML, Lee KC, Stender JD, Katzenellenbogen BS, Kraus WL (2004) Selective recognition of distinct classes of coactivators by a ligand-inducible activation domain. Mol Cell 13(5):725–738

    Article  CAS  PubMed  Google Scholar 

  116. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ (2008) Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 70:165–190. https://doi.org/10.1146/annurev.physiol.70.113006.100518

    Article  CAS  PubMed  Google Scholar 

  117. Aronica SM, Kraus WL, Katzenellenbogen BS (1994) Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci U S A 91(18):8517–8521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aronica SM, Katzenellenbogen BS (1993) Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol Endocrinol 7(6):743–752. https://doi.org/10.1210/mend.7.6.7689695

    Article  CAS  PubMed  Google Scholar 

  119. Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS (1992) Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci U S A 89(10):4658–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hayashi S, Sakamoto T, Inoue A, Yoshida N, Omoto Y, Yamaguchi Y (2003) Estrogen and growth factor signaling pathway: basic approaches for clinical application. J Steroid Biochem Mol Biol 86(3–5):433–442

    Article  CAS  PubMed  Google Scholar 

  121. Ribeiro JR, Freiman RN (2014) Estrogen signaling crosstalk: implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 143:160–173. https://doi.org/10.1016/j.jsbmb.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  122. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9(5). https://doi.org/10.3390/cancers9050052

  123. Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, Nicholson RI (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S99–S111. https://doi.org/10.1677/erc.1.01005

    Article  CAS  PubMed  Google Scholar 

  124. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241):1491–1494

    Article  CAS  PubMed  Google Scholar 

  125. Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T, McDonnell DP (1999) Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc Natl Acad Sci U S A 96(8):4686–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun M, Isaacs GD, Hah N, Heldring N, Fogarty EA, Kraus WL (2012) Estrogen regulates JNK1 genomic localization to control gene expression and cell growth in breast cancer cells. Mol Endocrinol 26(5):736–747. https://doi.org/10.1210/me.2011-1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee SH, Nam HS (2008) TNF alpha-induced down-regulation of estrogen receptor alpha in MCF-7 breast cancer cells. Mol Cells 26(3):285–290

    CAS  PubMed  Google Scholar 

  128. Holst F (2016) Estrogen receptor alpha gene amplification in breast cancer: 25 years of debate. World J Clin Oncol 7(2):160–173. https://doi.org/10.5306/wjco.v7.i2.160

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gutierrez C, Schiff R (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135(1):55–62. https://doi.org/10.1043/2010-0454-RAR.1

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, Coombes RC, Cleator S, Palmieri C (2010) The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol 7(2):83–89. https://doi.org/10.1038/nrclinonc.2009.219

    Article  CAS  PubMed  Google Scholar 

  131. Menard S, Fortis S, Castiglioni F, Agresti R, Balsari A (2001) HER2 as a prognostic factor in breast cancer. Oncology 61(Suppl 2):67–72. https://doi.org/10.1159/000055404

    Article  CAS  PubMed  Google Scholar 

  132. Marchio C, Natrajan R, Shiu KK, Lambros MB, Rodriguez-Pinilla SM, Tan DS, Lord CJ, Hungermann D, Fenwick K, Tamber N, Mackay A, Palacios J, Sapino A, Buerger H, Ashworth A, Reis-Filho JS (2008) The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol 216(4):399–407. https://doi.org/10.1002/path.2423

    Article  CAS  PubMed  Google Scholar 

  133. Hampton OA, Den Hollander P, Miller CA, Delgado DA, Li J, Coarfa C, Harris RA, Richards S, Scherer SE, Muzny DM, Gibbs RA, Lee AV, Milosavljevic A (2009) A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Res 19(2):167–177. https://doi.org/10.1101/gr.080259.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hsu PY, Hsu HK, Lan X, Juan L, Yan PS, Labanowska J, Heerema N, Hsiao TH, Chiu YC, Chen Y, Liu Y, Li L, Li R, Thompson IM, Nephew KP, Sharp ZD, Kirma NB, Jin VX, Huang TH (2013) Amplification of distant estrogen response elements deregulates target genes associated with tamoxifen resistance in breast cancer. Cancer Cell 24(2):197–212. https://doi.org/10.1016/j.ccr.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hsu PY, Hsu HK, Hsiao TH, Ye Z, Wang E, Profit AL, Jatoi I, Chen Y, Kirma NB, Jin VX, Sharp ZD, Huang TH (2016) Spatiotemporal control of estrogen-responsive transcription in ERalpha-positive breast cancer cells. Oncogene 35(18):2379–2389. https://doi.org/10.1038/onc.2015.298

    Article  CAS  PubMed  Google Scholar 

  136. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L, Jeselsohn R, Yelensky R, Brown M, Miller VA, Sarid D, Rizel S, Klein B, Rubinek T, Wolf I (2013) D538G mutation in estrogen receptor-alpha: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73(23):6856–6864. https://doi.org/10.1158/0008-5472.CAN-13-1197

    Article  CAS  PubMed  Google Scholar 

  137. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445. https://doi.org/10.1038/ng.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, Xiao T, Li W, Qiu X, Buchwalter G, Feiglin A, Abell-Hart K, Fei T, Rao P, Long H, Kwiatkowski N, Zhang T, Gray N, Melchers D, Houtman R, Liu XS, Cohen O, Wagle N, Winer EP, Zhao J, Brown M (2018) Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33(2):173–186 e175. https://doi.org/10.1016/j.ccell.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for critical comments and suggestions from members of the Kraus lab, including Shino Murakami, Anusha Nagari, and J. Tyler Piazza. We are also thankful for the contributions of past Kraus lab members, whose studies furthering our understanding of the molecular mechanisms of estrogen-regulated transcription are highlighted in this review, including Nasun Hah, Charles Danko, Shino Murakami, Hector Franco, and Anusha Nagari. The estrogen-related studies in the Kraus lab are supported by grants from the NIH/NIDDK and the Cancer Prevention and Research Institute of Texas (CPRIT) to W.L.K. Y.M.V. is supported by a Postdoctoral Research Fellowship from the Lalor Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lee Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasquez, Y.M., Kraus, W.L. (2019). The Estrogen-Regulated Transcriptome: Rapid, Robust, Extensive, and Transient. In: Zhang, X. (eds) Estrogen Receptor and Breast Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-99350-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99350-8_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-99349-2

  • Online ISBN: 978-3-319-99350-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics