Skip to main content

Structural Studies with Coactivators for the Estrogen Receptor

  • Chapter
  • First Online:
Estrogen Receptor and Breast Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 915 Accesses

Abstract

Coactivators play essential roles in nuclear receptor-mediated gene transcription. To date, a variety of coactivators have been identified. They can be scaffolding proteins, chromatin remodelers, posttranslational modification enzymes, or RNA splicing factors. Different coactivators are recruited to a nuclear receptor to form large protein complexes at different stages of transcription, and they often act synergistically. Structural analyses on these coactivators and their complex formation with nuclear receptors provide valuable information on understanding nuclear receptor-mediated gene regulation. Here we review recent structural studies on three well-documented nuclear receptor coactivators: steroid receptor coactivators (SRCs), CBP/p300, and CARM1, and their assembly into active DNA-bound estrogen receptor/coactivator complexes for initiation and for the subsequent step of elongation. This review specifically emphasizes the structural interaction within the estrogen receptor (ER) coactivator complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulynko YA, O’Malley BW (2011) Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry 50(3):313–328. https://doi.org/10.1021/bi101762x

    Article  CAS  PubMed  Google Scholar 

  2. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S (2013) Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 51(3):T1–T21. https://doi.org/10.1530/JME-13-0173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Helsen C, Claessens F (2014) Looking at nuclear receptors from a new angle. Mol Cell Endocrinol 382(1):97–106. https://doi.org/10.1016/j.mce.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  4. Rastinejad F, Ollendorff V, Polikarpov I (2015) Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem Sci 40(1):16–24. https://doi.org/10.1016/j.tibs.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  5. Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, Tasset D, Chambon P (1989) Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57(3):433–442

    Article  CAS  Google Scholar 

  6. Shemshedini L, Ji JW, Brou C, Chambon P, Gronemeyer H (1992) In vitro activity of the transcription activation functions of the progesterone receptor. Evidence for intermediary factors. J Biol Chem 267(3):1834–1839

    CAS  PubMed  Google Scholar 

  7. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270(5240):1354–1357

    Article  CAS  Google Scholar 

  8. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15(14):3667–3675

    Article  CAS  Google Scholar 

  9. Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR (1996) GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A 93(10):4948–4952

    Article  CAS  Google Scholar 

  10. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328):965–968

    Article  CAS  Google Scholar 

  11. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387(6634):677–684. https://doi.org/10.1038/42652

    Article  CAS  PubMed  Google Scholar 

  12. Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW (1997) TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem 272(44):27629–27634

    Article  CAS  Google Scholar 

  13. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90(3):569–580

    Article  CAS  Google Scholar 

  14. Li H, Gomes PJ, Chen JD (1997) RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A 94(16):8479–8484

    Article  CAS  Google Scholar 

  15. York B, O’Malley BW (2010) Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285(50):38743–38750. https://doi.org/10.1074/jbc.R110.193367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szwarc MM, Lydon JP, O’Malley BW (2015) Steroid receptor coactivators as therapeutic targets in the female reproductive system. J Steroid Biochem Mol Biol 154:32–38. https://doi.org/10.1016/j.jsbmb.2015.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dasgupta S, O’Malley BW (2014) Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J Mol Endocrinol 53(2):R47–R59. https://doi.org/10.1530/JME-14-0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stashi E, York B, O’Malley BW (2014) Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 25(7):337–347. https://doi.org/10.1016/j.tem.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JH, Li H, Stallcup MR (2003) CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol Cell 12(6):1537–1549

    Article  CAS  Google Scholar 

  20. Chen YH, Kim JH, Stallcup MR (2005) GAC63, a GRIP1-dependent nuclear receptor coactivator. Mol Cell Biol 25(14):5965–5972. https://doi.org/10.1128/MCB.25.14.5965-5972.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O’Malley BW (2015) Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell 57(6):1047–1058. https://doi.org/10.1016/j.molcel.2015.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson AB, O’Malley BW (2012) Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348(2):430–439. https://doi.org/10.1016/j.mce.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Wu RC, Amazit L, Tsai SY, Tsai MJ, O’Malley BW (2007) Specific amino acid residues in the basic helix-loop-helix domain of SRC-3 are essential for its nuclear localization and proteasome-dependent turnover. Mol Cell Biol 27(4):1296–1308. https://doi.org/10.1128/MCB.00336-06

    Article  CAS  PubMed  Google Scholar 

  24. Wu RC, Feng Q, Lonard DM, O’Malley BW (2007) SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129(6):1125–1140

    Article  CAS  Google Scholar 

  25. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389(6647):194–198. https://doi.org/10.1038/38304

    Article  CAS  PubMed  Google Scholar 

  26. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387(6634):733–736. https://doi.org/10.1038/42750

    Article  CAS  PubMed  Google Scholar 

  27. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  Google Scholar 

  28. Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12(21):3343–3356

    Article  CAS  Google Scholar 

  29. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395(6698):137–143. https://doi.org/10.1038/25931

    Article  CAS  PubMed  Google Scholar 

  30. Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dyson HJ, Evans RM, Wright PE (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415(6871):549–553

    Article  CAS  Google Scholar 

  31. Dyson HJ, Wright PE (2016) Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 291(13):6714–6722. https://doi.org/10.1074/jbc.R115.692020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365(6449):855–859. https://doi.org/10.1038/365855a0

    Article  CAS  Google Scholar 

  33. Stein RW, Corrigan M, Yaciuk P, Whelan J, Moran E (1990) Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 64(9):4421–4427

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8(8):869–884

    Article  CAS  Google Scholar 

  35. Shiama N (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7(6):230–236. https://doi.org/10.1016/S0962-8924(97)01048-9

    Article  CAS  PubMed  Google Scholar 

  36. Janknecht R, Hunter T (1996) Transcription. A growing coactivator network. Nature 383(6595):22–23. https://doi.org/10.1038/383022a0

    Article  CAS  PubMed  Google Scholar 

  37. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  38. Bedford DC, Kasper LH, Fukuyama T, Brindle PK (2010) Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 5(1):9–15

    Article  CAS  Google Scholar 

  39. Giles RH, Peters DJ, Breuning MH (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14(5):178–183

    Article  CAS  Google Scholar 

  40. Dutta R, Tiu B, Sakamoto KM (2016) CBP/p300 acetyltransferase activity in hematologic malignancies. Mol Genet Metab 119(1–2):37–43. https://doi.org/10.1016/j.ymgme.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  41. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114(Pt 13):2363–2373

    CAS  PubMed  Google Scholar 

  42. Wang F, Marshall CB, Ikura M (2013) Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 70(21):3989–4008. https://doi.org/10.1007/s00018-012-1254-4

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R, Cole PA (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451(7180):846–850. https://doi.org/10.1038/nature06546

    Article  CAS  PubMed  Google Scholar 

  44. Berndsen CE, Denu JM (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18(6):682–689. https://doi.org/10.1016/j.sbi.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599–606

    Article  CAS  Google Scholar 

  46. Turner BM, O’Neill LP (1995) Histone acetylation in chromatin and chromosomes. Semin Cell Biol 6(4):229–236

    Article  CAS  Google Scholar 

  47. Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274(3):1189–1192

    Article  CAS  Google Scholar 

  48. Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262. https://doi.org/10.1038/emboj.2010.318

    Article  CAS  PubMed  Google Scholar 

  49. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606

    Article  CAS  Google Scholar 

  50. Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Chem 278(18):15727–15734. https://doi.org/10.1074/jbc.M300546200

    Article  CAS  PubMed  Google Scholar 

  51. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F1 activity by acetylation. EMBO J 19(4):662–671. https://doi.org/10.1093/emboj/19.4.662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M (2000) E2F family members are differentially regulated by reversible acetylation. J Biol Chem 275(15):10887–10892

    Article  CAS  Google Scholar 

  53. Boyes J, Byfield P, Nakatani Y, Ogryzko V (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396(6711):594–598. https://doi.org/10.1038/25166

    Article  CAS  PubMed  Google Scholar 

  54. Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7(9):689–692

    Article  CAS  Google Scholar 

  55. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98(5):675–686

    Article  CAS  Google Scholar 

  56. Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18(2):90–101. https://doi.org/10.1038/nrm.2016.140

    Article  CAS  PubMed  Google Scholar 

  57. Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, Roeder RG, Allis CD (2015) Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 58(2):203–215. https://doi.org/10.1016/j.molcel.2015.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S (2016) Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 62(2):169–180. https://doi.org/10.1016/j.molcel.2016.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, Jackson E, Aiello NM, Haas NB, Rebbeck TR, Judkins A, Won KJ, Chodosh LA, Garcia BA, Stanger BZ, Feldman MD, Blair IA, Wellen KE (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20(2):306–319. https://doi.org/10.1016/j.cmet.2014.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G, Chen Y, Xia C, Peng C, Ruan H, Kirkey M, Wang D, Jensen LM, Kwon OK, Lee S, Pletcher SD, Tan M, Lombard DB, White KP, Zhao H, Roeder RG, Yang X, Zhao Y (2016) Metabolic regulation of gene expression by histone lysine beta-hydroxybutyrylation. Mol Cell 62(2):194–206. https://doi.org/10.1016/j.molcel.2016.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaczmarska Z, Ortega E, Goudarzi A, Huang H, Kim S, Marquez JA, Zhao Y, Khochbin S, Panne D (2017) Structure of p300 in complex with acyl-CoA variants. Nat Chem Biol 13(1):21–29. https://doi.org/10.1038/nchembio.2217

    Article  CAS  PubMed  Google Scholar 

  62. Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA (2004) Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11(4):308–315. https://doi.org/10.1038/nsmb740

    Article  CAS  PubMed  Google Scholar 

  63. Park S, Stanfield RL, Martinez-Yamout MA, Dyson HJ, Wilson IA, Wright PE (2017) Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci U S A 114(27):E5335–E5342. https://doi.org/10.1073/pnas.1703105114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013) Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 20(9):1040–1046. https://doi.org/10.1038/nsmb.2642

    Article  CAS  Google Scholar 

  65. Das C, Roy S, Namjoshi S, Malarkey CS, Jones DN, Kutateladze TG, Churchill ME, Tyler JK (2014) Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci U S A 111(12):E1072–E1081. https://doi.org/10.1073/pnas.1319122111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Plotnikov AN, Yang S, Zhou TJ, Rusinova E, Frasca A, Zhou MM (2014) Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure 22(2):353–360. https://doi.org/10.1016/j.str.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  67. Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand, Sanchez R, Zeleznik-Le NJ, Ronai Z, Zhou MM (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263

    Article  CAS  Google Scholar 

  68. Kraus WL, Manning ET, Kadonaga JT (1999) Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol 19(12):8123–8135

    Article  CAS  Google Scholar 

  69. Manning ET, Ikehara T, Ito T, Kadonaga JT, Kraus WL (2001) p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 21(12):3876–3887. https://doi.org/10.1128/MCB.21.12.3876-3887.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ragvin A, Valvatne H, Erdal S, Arskog V, Tufteland KR, Breen K, ØYan AM, Eberharter A, Gibson TJ, Becker PB, Aasland R (2004) Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 337(4):773–788. https://doi.org/10.1016/j.jmb.2004.01.051

    Article  CAS  PubMed  Google Scholar 

  71. Rack JG, Lutter T, Kjaereng Bjerga GE, Guder C, Ehrhardt C, Varv S, Ziegler M, Aasland R (2014) The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol 426(24):3960–3972. https://doi.org/10.1016/j.jmb.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  72. Parker D, Ferreri K, Nakajima T, LaMorte VJ, Evans R, Koerber SC, Hoeger C, Montminy MR (1996) Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol Cell Biol 16(2):694–703

    Article  CAS  Google Scholar 

  73. Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91(6):741–752

    Article  CAS  Google Scholar 

  74. Van Orden K, Giebler HA, Lemasson I, Gonzales M, Nyborg JK (1999) Binding of p53 to the KIX domain of CREB binding protein. A potential link to human T-cell leukemia virus, type I-associated leukemogenesis. J Biol Chem 274(37):26321–26328

    Article  Google Scholar 

  75. Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (2002) Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. J Biol Chem 277(44):42241–42248. https://doi.org/10.1074/jbc.M207361200

    Article  CAS  Google Scholar 

  76. Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002) Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem 277(45):43168–43174. https://doi.org/10.1074/jbc.M207660200

    Article  CAS  PubMed  Google Scholar 

  77. Campbell KM, Lumb KJ (2002) Structurally distinct modes of recognition of the KIX domain of CBP by Jun and CREB. Biochemistry 41(47):13956–13964

    Article  CAS  Google Scholar 

  78. Wang F, Marshall CB, Yamamoto K, Li GY, Gasmi-Seabrook GM, Okada H, Mak TW, Ikura M (2012) Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc Natl Acad Sci U S A 109(16):6078–6083. https://doi.org/10.1073/pnas.1119073109

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (2000) CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proc Natl Acad Sci U S A 97(3):1020–1025

    Article  CAS  Google Scholar 

  80. Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (1996) SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev 10(22):2903–2911

    Article  CAS  Google Scholar 

  81. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr (1996) Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci U S A 93(26):15092–15096

    Article  CAS  Google Scholar 

  82. Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001) MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 21(7):2249–2258. https://doi.org/10.1128/MCB.21.7.2249-2258.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry 48(10):2115–2124. https://doi.org/10.1021/bi802055v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Guzman RN, Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2005) CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 44(2):490–497. https://doi.org/10.1021/bi048161t

    Article  CAS  PubMed  Google Scholar 

  85. Waters L, Yue B, Veverka V, Renshaw P, Bramham J, Matsuda S, Frenkiel T, Kelly G, Muskett F, Carr M, Heery DM (2006) Structural diversity in p160/CREB-binding protein coactivator complexes. J Biol Chem 281(21):14787–14795. https://doi.org/10.1074/jbc.M600237200

    Article  CAS  PubMed  Google Scholar 

  86. Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE (2010) Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49(46):9964–9971. https://doi.org/10.1021/bi1012996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qin BY, Liu C, Srinath H, Lam SS, Correia JJ, Derynck R, Lin K (2005) Crystal structure of IRF-3 in complex with CBP. Structure 13(9):1269–1277. https://doi.org/10.1016/j.str.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  88. Ebert MO, Bae SH, Dyson HJ, Wright PE (2008) NMR relaxation study of the complex formed between CBP and the activation domain of the nuclear hormone receptor coactivator ACTR. Biochemistry 47(5):1299–1308. https://doi.org/10.1021/bi701767j

    Article  CAS  PubMed  Google Scholar 

  89. Kjaergaard M, Andersen L, Nielsen LD, Teilum K (2013) A folded excited state of ligand-free nuclear coactivator binding domain (NCBD) underlies plasticity in ligand recognition. Biochemistry 52(10):1686–1693. https://doi.org/10.1021/bi4001062

    Article  CAS  PubMed  Google Scholar 

  90. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM (2001) A transcriptional switch mediated by cofactor methylation. Science 294(5551):2507–2511. https://doi.org/10.1126/science.1065961

    Article  CAS  PubMed  Google Scholar 

  91. Chevillard-Briet M, Trouche D, Vandel L (2002) Control of CBP co-activating activity by arginine methylation. EMBO J 21(20):5457–5466

    Article  CAS  Google Scholar 

  92. Zanger K, Radovick S, Wondisford FE (2001) CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol Cell 7(3):551–558

    Article  CAS  Google Scholar 

  93. Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE (2004) Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med 10(6):633–637. https://doi.org/10.1038/nm1050

    Article  CAS  PubMed  Google Scholar 

  94. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284(5423):2174–2177

    Article  CAS  Google Scholar 

  95. Chen D, Huang SM, Stallcup MR (2000) Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275(52):40810–40816. https://doi.org/10.1074/jbc.M005459200

    Article  CAS  PubMed  Google Scholar 

  96. Lee YH, Koh SS, Zhang X, Cheng X, Stallcup MR (2002) Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol 22(11):3621–3632

    Article  CAS  Google Scholar 

  97. Yadav N, Lee J, Kim J, Shen J, Hu MC, Aldaz CM, Bedford MT (2003) Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc Natl Acad Sci U S A 100(11):6464–6468. https://doi.org/10.1073/pnas.1232272100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR, Aswad DW (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40(19):5747–5756

    Article  CAS  Google Scholar 

  99. Casadio F, Lu X, Pollock SB, LeRoy G, Garcia BA, Muir TW, Roeder RG, Allis CD (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci U S A 110(37):14894–14899. https://doi.org/10.1073/pnas.1312925110

    Article  PubMed  PubMed Central  Google Scholar 

  100. Feng Q, Yi P, Wong J, O’Malley BW (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26(21):7846–7857

    Article  CAS  Google Scholar 

  101. Lee YH, Coonrod SA, Kraus WL, Jelinek MA, Stallcup MR (2005) Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A 102(10):3611–3616. https://doi.org/10.1073/pnas.0407159102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao HY, Zhang YJ, Dai H, Zhang Y, Shen YF (2011) CARM1 mediates modulation of Sox2. PLoS One 6(10):e27026. https://doi.org/10.1371/journal.pone.0027026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hein K, Mittler G, Cizelsky W, Kuhl M, Ferrante F, Liefke R, Berger IM, Just S, Strang JE, Kestler HA, Oswald F, Borggrefe T (2015) Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci Signal 8(369):ra30. https://doi.org/10.1126/scisignal.2005892

    Article  CAS  PubMed  Google Scholar 

  104. Fujiwara T, Mori Y, Chu DL, Koyama Y, Miyata S, Tanaka H, Yachi K, Kubo T, Yoshikawa H, Tohyama M (2006) CARM1 regulates proliferation of PC12 cells by methylating HuD. Mol Cell Biol 26(6):2273–2285. https://doi.org/10.1128/MCB.26.6.2273-2285.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee J, Bedford MT (2002) PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep 3(3):268–273. https://doi.org/10.1093/embo-reports/kvf052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cheng D, Cote J, Shaaban S, Bedford MT (2007) The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell 25(1):71–83. https://doi.org/10.1016/j.molcel.2006.11.019

    Article  CAS  PubMed  Google Scholar 

  107. Kim J, Lee J, Yadav N, Wu Q, Carter C, Richard S, Richie E, Bedford MT (2004) Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J Biol Chem 279(24):25339–25344. https://doi.org/10.1074/jbc.M402544200

    Article  CAS  PubMed  Google Scholar 

  108. Selvi BR, Swaminathan A, Maheshwari U, Nagabhushana A, Mishra RK, Kundu TK (2015) CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a. Mol Biol Cell 26(2):316–326. https://doi.org/10.1091/mbc.E14-01-0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yadav N, Cheng D, Richard S, Morel M, Iyer VR, Aldaz CM, Bedford MT (2008) CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 9(2):193–198. https://doi.org/10.1038/sj.embor.7401151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ito T, Yadav N, Lee J, Furumatsu T, Yamashita S, Yoshida K, Taniguchi N, Hashimoto M, Tsuchiya M, Ozaki T, Lotz M, Bedford MT, Asahara H (2009) Arginine methyltransferase CARM1/PRMT4 regulates endochondral ossification. BMC Dev Biol 9:47. https://doi.org/10.1186/1471-213X-9-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. O'Brien KB, Alberich-Jorda M, Yadav N, Kocher O, Diruscio A, Ebralidze A, Levantini E, Sng NJ, Bhasin M, Caron T, Kim D, Steidl U, Huang G, Halmos B, Rodig SJ, Bedford MT, Tenen DG, Kobayashi S (2010) CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137(13):2147–2156. https://doi.org/10.1242/dev.037150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26(20):4391–4401. https://doi.org/10.1038/sj.emboj.7601855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yue WW, Hassler M, Roe SM, Thompson-Vale V, Pearl LH (2007) Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J 26(20):4402–4412. https://doi.org/10.1038/sj.emboj.7601856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of nucleotide-binding protein. Nature 250(463):194–199

    Article  CAS  Google Scholar 

  115. Schluckebier G, O’Gara M, Saenger W, Cheng X (1995) Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol 247(1):16–20. https://doi.org/10.1006/jmbi.1994.0117

    Article  CAS  PubMed  Google Scholar 

  116. Boriack-Sjodin PA, Jin L, Jacques SL, Drew A, Sneeringer C, Scott MP, Moyer MP, Ribich S, Moradei O, Copeland RA (2016) Structural insights into ternary complex formation of human CARM1 with various substrates. ACS Chem Biol 11(3):763–771. https://doi.org/10.1021/acschembio.5b00773

    Article  CAS  PubMed  Google Scholar 

  117. Teyssier C, Chen D, Stallcup MR (2002) Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem 277(48):46066–46072. https://doi.org/10.1074/jbc.M207623200

    Article  CAS  PubMed  Google Scholar 

  118. Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Medchemcomm 5(12):1779–1788. https://doi.org/10.1039/c4md00269e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Blomberg N, Baraldi E, Nilges M, Saraste M (1999) The PH superfold: a structural scaffold for multiple functions. Trends Biochem Sci 24(11):441–445

    Article  CAS  Google Scholar 

  120. Yi P, Wang Z, Feng Q, Chou CK, Pintilie GD, Shen H, Foulds CE, Fan G, Serysheva I, Ludtke SJ, Schmid MF, Hung MC, Chiu W, O’Malley BW (2017) Structural and functional impacts of ER coactivator sequential recruitment. Mol Cell 67(5):733–743 e734. https://doi.org/10.1016/j.molcel.2017.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707. https://doi.org/10.1016/j.cell.2016.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O’Malley BW (1998) The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273(20):12101–12108

    Article  CAS  Google Scholar 

  123. Metivier R, Penot G, Flouriot G, Pakdel F (2001) Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol 15(11):1953–1970

    CAS  PubMed  Google Scholar 

  124. Dutertre M, Smith CL (2003) Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 17(7):1296–1314. https://doi.org/10.1210/me.2001-0316

    Article  CAS  PubMed  Google Scholar 

  125. Daujat S, Bauer UM, Shah V, Turner B, Berger S, Kouzarides T (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12(24):2090–2097

    Article  CAS  Google Scholar 

  126. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117(6):735–748. https://doi.org/10.1016/j.cell.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  127. Ma H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis CD, Hager GL, Stallcup MR (2001) Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol 11(24):1981–1985

    Article  CAS  Google Scholar 

  128. Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3(1):39–44. https://doi.org/10.1093/embo-reports/kvf013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Denis H, Deplus R, Putmans P, Yamada M, Metivier R, Fuks F (2009) Functional connection between deimination and deacetylation of histones. Mol Cell Biol 29(18):4982–4993. https://doi.org/10.1128/MCB.00285-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu J, Xu W (2012) Histone H3R17me2a mark recruits human RNA polymerase-associated factor 1 complex to activate transcription. Proc Natl Acad Sci U S A 109(15):5675–5680. https://doi.org/10.1073/pnas.1114905109

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yang Y, Lu Y, Espejo A, Wu J, Xu W, Liang S, Bedford MT (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40(6):1016–1023. https://doi.org/10.1016/j.molcel.2010.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839(8):702–710. https://doi.org/10.1016/j.bbagrm.2014.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151(1):41–60. https://doi.org/10.1016/j.jsb.2005.03.010

    Article  CAS  Google Scholar 

  134. Sandberg K, Mastronarde DN, Beylkin G (2003) A fast reconstruction algorithm for electron microscope tomography. J Struct Biol 144(1–2):61–72

    Article  Google Scholar 

  135. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152(1):36–51. https://doi.org/10.1016/j.jsb.2005.07.007

    Article  PubMed  Google Scholar 

  136. Foulds CE, Feng Q, Ding C, Bailey S, Hunsaker TL, Malovannaya A, Hamilton RA, Gates LA, Zhang Z, Li C, Chan D, Bajaj A, Callaway CG, Edwards DP, Lonard DM, Tsai SY, Tsai MJ, Qin J, O’Malley BW (2013) Proteomic analysis of coregulators bound to ERalpha on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 51:185. https://doi.org/10.1016/j.molcel.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grants HD8818 and NIDDK59820 to B.W.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert W. O’Malley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yi, P., Wang, Z., O’Malley, B.W. (2019). Structural Studies with Coactivators for the Estrogen Receptor. In: Zhang, X. (eds) Estrogen Receptor and Breast Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-99350-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99350-8_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-99349-2

  • Online ISBN: 978-3-319-99350-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics