Skip to main content

Structural Insights into Estrogen Receptors and Antiestrogen Therapies

  • Chapter
  • First Online:
Estrogen Receptor and Breast Cancer

Abstract

The differential impact of distinct antiestrogens (AEs) is the result of varying structural perturbations they confer to estrogen receptors (ERs) when these small-molecule synthetic compounds compete with endogenous hormones, such as 17β-estradiol. These structural changes translate to altered ability of ERs to conscript cofactors and consequently alter the transcription of their target genes. AEs, depending on the mechanism of action, are classified as either selective estrogen receptor modulators (SERMs), which display tamoxifen-like partial agonism, or as selective estrogen receptor downregulators (SERDs) that confer structurally induced posttranslational modifications (PTMs) that destine these receptors for proteosomal degradation. The conformational plasticity of the ER helix 12 (H12) and how its dynamics and conformational sampling is altered by different AEs are crucial to cofactor recruitment and selectivity, translating to varying degrees of receptor modulation and downstream functional effects. Dissecting these conformational state fluctuations within the context of variable cofactor profiles in different tissues, PTM induction, and emergence of hormonal treatment-related resistance mutations in ERs could lead to improved design of novel therapeutic molecules for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346(5):340–352. https://doi.org/10.1056/NEJMra000471

    Article  CAS  PubMed  Google Scholar 

  2. Gruber DM, Huber JC (1999) Conjugated estrogens--the natural SERMs. Gynecol Endocrinol 13(Suppl 6):9–12

    PubMed  Google Scholar 

  3. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P (1986) Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320(6058):134–139. https://doi.org/10.1038/320134a0

    Article  CAS  PubMed  Google Scholar 

  4. Leygue E, Dotzlaw H, Lu B, Glor C, Watson PH, Murphy LC (1998) Estrogen receptor beta: mine is longer than yours? J Clin Endocrinol Metab 83(10):3754–3755. https://doi.org/10.1210/jcem.83.10.5187-1

    Article  CAS  PubMed  Google Scholar 

  5. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116(3):561–570. https://doi.org/10.1172/JCI27987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81(4):1535–1565. https://doi.org/10.1152/physrev.2001.81.4.1535

    Article  CAS  PubMed  Google Scholar 

  7. Bai Y, Giguere V (2003) Isoform-selective interactions between estrogen receptors and steroid receptor coactivators promoted by estradiol and ErbB-2 signaling in living cells. Mol Endocrinol 17(4):589–599. https://doi.org/10.1210/me.2002-0351

    Article  CAS  PubMed  Google Scholar 

  8. Mak HY, Hoare S, Henttu PM, Parker MG (1999) Molecular determinants of the estrogen receptor-coactivator interface. Mol Cell Biol 19(5):3895–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harris HA (2007) Estrogen receptor-beta: recent lessons from in vivo studies. Mol Endocrinol 21(1):1–13. https://doi.org/10.1210/me.2005-0459

    Article  CAS  PubMed  Google Scholar 

  10. Hewitt SC, Winuthayanon W, Korach KS (2016) What’s new in estrogen receptor action in the female reproductive tract. J Mol Endocrinol 56(2):R55–R71. https://doi.org/10.1530/JME-15-0254

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hamilton KJ, Arao Y, Korach KS (2014) Estrogen hormone physiology: reproductive findings from estrogen receptor mutant mice. Reprod Biol 14(1):3–8. https://doi.org/10.1016/j.repbio.2013.12.002

    Article  PubMed  Google Scholar 

  12. Heldring N, Nilsson M, Buehrer B, Treuter E, Gustafsson JA (2004) Identification of tamoxifen-induced coregulator interaction surfaces within the ligand-binding domain of estrogen receptors. Mol Cell Biol 24(8):3445–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paige LA, Christensen DJ, Gron H, Norris JD, Gottlin EB, Padilla KM, Chang CY, Ballas LM, Hamilton PT, McDonnell DP, Fowlkes DM (1999) Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc Natl Acad Sci U S A 96(7):3999–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295(5564):2465–2468. https://doi.org/10.1126/science.1068537

    Article  CAS  PubMed  Google Scholar 

  15. Pike AC (2006) Lessons learnt from structural studies of the oestrogen receptor. Best Pract Res Clin Endocrinol Metab 20(1):1–14. https://doi.org/10.1016/j.beem.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  16. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51(6):941–951

    Article  CAS  PubMed  Google Scholar 

  17. Ponglikitmongkol M, Green S, Chambon P (1988) Genomic organization of the human oestrogen receptor gene. EMBO J 7(11):3385–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogawa S, Inoue S, Watanabe T, Hiroi H, Orimo A, Hosoi T, Ouchi Y, Muramatsu M (1998) The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro. Biochem Biophys Res Commun 243(1):122–126. https://doi.org/10.1006/bbrc.1997.7893

    Article  CAS  PubMed  Google Scholar 

  19. Muramatsu M, Inoue S (2000) Estrogen receptors: how do they control reproductive and nonreproductive functions? Biochem Biophys Res Commun 270(1):1–10. https://doi.org/10.1006/bbrc.2000.2214

    Article  CAS  PubMed  Google Scholar 

  20. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870. https://doi.org/10.1210/endo.138.3.4979

    Article  CAS  PubMed  Google Scholar 

  21. Pike AC, Brzozowski AM, Hubbard RE (2000) A structural biologist's view of the oestrogen receptor. J Steroid Biochem Mol Biol 74(5):261–268

    Article  CAS  PubMed  Google Scholar 

  22. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758. https://doi.org/10.1038/39645

    Article  CAS  PubMed  Google Scholar 

  23. Arao Y, Hamilton KJ, Coons LA, Korach KS (2013) Estrogen receptor alpha L543A,L544A mutation changes antagonists to agonists, correlating with the ligand binding domain dimerization associated with DNA binding activity. J Biol Chem 288(29):21105–21116. https://doi.org/10.1074/jbc.M113.463455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koide A, Zhao C, Naganuma M, Abrams J, Deighton-Collins S, Skafar DF, Koide S (2007) Identification of regions within the F domain of the human estrogen receptor alpha that are important for modulating transactivation and protein-protein interactions. Mol Endocrinol 21(4):829–842. https://doi.org/10.1210/me.2006-0203

    Article  CAS  PubMed  Google Scholar 

  25. Montano MM, Muller V, Trobaugh A, Katzenellenbogen BS (1995) The carboxy-terminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol Endocrinol 9(7):814–825. https://doi.org/10.1210/mend.9.7.7476965

    Article  CAS  PubMed  Google Scholar 

  26. Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA (2001) Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem 44(24):4230–4251

    Article  CAS  PubMed  Google Scholar 

  27. Lees JA, Fawell SE, White R, Parker MG (1990) A 22-amino-acid peptide restores DNA-binding activity to dimerization-defective mutants of the estrogen receptor. Mol Cell Biol 10(10):5529–5531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamrazi A, Carlson KE, Daniels JR, Hurth KM, Katzenellenbogen JA (2002) Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol Endocrinol 16(12):2706–2719. https://doi.org/10.1210/me.2002-0250

    Article  CAS  PubMed  Google Scholar 

  29. Vajdos FF, Hoth LR, Geoghegan KF, Simons SP, LeMotte PK, Danley DE, Ammirati MJ, Pandit J (2007) The 2.0 A crystal structure of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci 16(5):897–905. https://doi.org/10.1110/ps.062729207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  PubMed  Google Scholar 

  31. Warnmark A, Treuter E, Gustafsson JA, Hubbard RE, Brzozowski AM, Pike AC (2002) Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha. J Biol Chem 277(24):21862–21868. https://doi.org/10.1074/jbc.M200764200

    Article  CAS  PubMed  Google Scholar 

  32. Tetel MJ (2009) Nuclear receptor coactivators: essential players for steroid hormone action in the brain and in behaviour. J Neuroendocrinol 21(4):229–237. https://doi.org/10.1111/j.1365-2826.2009.01827.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931. https://doi.org/10.1152/physrev.00026.2006

    Article  CAS  PubMed  Google Scholar 

  34. Heldring N, Pawson T, McDonnell D, Treuter E, Gustafsson JA, Pike AC (2007) Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 282(14):10449–10455. https://doi.org/10.1074/jbc.M611424200

    Article  CAS  PubMed  Google Scholar 

  35. Huang HJ, Norris JD, McDonnell DP (2002) Identification of a negative regulatory surface within estrogen receptor alpha provides evidence in support of a role for corepressors in regulating cellular responses to agonists and antagonists. Mol Endocrinol 16(8):1778–1792. https://doi.org/10.1210/me.2002-0089

    Article  CAS  PubMed  Google Scholar 

  36. Webb P, Nguyen P, Kushner PJ (2003) Differential SERM effects on corepressor binding dictate ERalpha activity in vivo. J Biol Chem 278(9):6912–6920. https://doi.org/10.1074/jbc.M208501200

    Article  CAS  PubMed  Google Scholar 

  37. Dobrzycka KM, Townson SM, Jiang S, Oesterreich S (2003) Estrogen receptor corepressors -- a role in human breast cancer? Endocr Relat Cancer 10(4):517–536

    Article  CAS  PubMed  Google Scholar 

  38. Chakraborty S, Levenson AS, Biswas PK (2013) Structural insights into Resveratrol’s antagonist and partial agonist actions on estrogen receptor alpha. BMC Struct Biol 13:27. https://doi.org/10.1186/1472-6807-13-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwabe JW, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75(3):567–578

    Article  CAS  PubMed  Google Scholar 

  40. Schwabe JW, Chapman L, Finch JT, Rhodes D, Neuhaus D (1993) DNA recognition by the oestrogen receptor: from solution to the crystal. Structure 1(3):187–204

    Article  CAS  PubMed  Google Scholar 

  41. Schwabe JW, Chapman L, Rhodes D (1995) The oestrogen receptor recognizes an imperfectly palindromic response element through an alternative side-chain conformation. Structure 3(2):201–213

    Article  CAS  PubMed  Google Scholar 

  42. Schwabe JW, Neuhaus D, Rhodes D (1990) Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348(6300):458–461. https://doi.org/10.1038/348458a0

    Article  CAS  PubMed  Google Scholar 

  43. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29(14):2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F, Yeo A, George J, Kuznetsov VA, Lee YK, Charn TH, Palanisamy N, Miller LD, Cheung E, Katzenellenbogen BS, Ruan Y, Bourque G, Wei CL, Liu ET (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3(6):e87. https://doi.org/10.1371/journal.pgen.0030087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjornstrom L, Sjoberg M (2002) Mutations in the estrogen receptor DNA-binding domain discriminate between the classical mechanism of action and cross-talk with Stat5b and activating protein 1 (AP-1). J Biol Chem 277(50):48479–48483. https://doi.org/10.1074/jbc.C200570200

    Article  CAS  PubMed  Google Scholar 

  46. Cheung E, Acevedo ML, Cole PA, Kraus WL (2005) Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci U S A 102(3):559–564. https://doi.org/10.1073/pnas.0407113102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276(40):36869–36872. https://doi.org/10.1074/jbc.R100029200

    Article  CAS  PubMed  Google Scholar 

  48. Huang J, Li X, Hilf R, Bambara RA, Muyan M (2005) Molecular basis of therapeutic strategies for breast cancer. Curr Drug Targets Immune Endocr Metabol Disord 5(4):379–396

    Article  CAS  PubMed  Google Scholar 

  49. Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    Article  CAS  PubMed  Google Scholar 

  50. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74(5):311–317

    Article  CAS  PubMed  Google Scholar 

  51. Kumar R, Thompson EB (2003) Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol Endocrinol 17(1):1–10. https://doi.org/10.1210/me.2002-0258

    Article  CAS  PubMed  Google Scholar 

  52. Bocquel MT, Kumar V, Stricker C, Chambon P, Gronemeyer H (1989) The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acids Res 17(7):2581–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Metzger D, Ali S, Bornert JM, Chambon P (1995) Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J Biol Chem 270(16):9535–9542

    Article  CAS  PubMed  Google Scholar 

  54. Tasset D, Tora L, Fromental C, Scheer E, Chambon P (1990) Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62(6):1177–1187

    Article  CAS  PubMed  Google Scholar 

  55. Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P (1989) The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59(3):477–487

    Article  CAS  PubMed  Google Scholar 

  56. Benecke A, Chambon P, Gronemeyer H (2000) Synergy between estrogen receptor alpha activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2. EMBO Rep 1(2):151–157. https://doi.org/10.1038/sj.embor.embor609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kraus WL, McInerney EM, Katzenellenbogen BS (1995) Ligand-dependent, transcriptionally productive association of the amino- and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci U S A 92(26):12314–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yi P, Bhagat S, Hilf R, Bambara RA, Muyan M (2002) Differences in the abilities of estrogen receptors to integrate activation functions are critical for subtype-specific transcriptional responses. Mol Endocrinol 16(8):1810–1827. https://doi.org/10.1210/me.2001-0323

    Article  CAS  PubMed  Google Scholar 

  59. Kumar R, Litwack G (2009) Structural and functional relationships of the steroid hormone receptors’ N-terminal transactivation domain. Steroids 74(12):877–883. https://doi.org/10.1016/j.steroids.2009.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R (2011) The dynamic structure of the estrogen receptor. J Amino Acids 2011:812540. https://doi.org/10.4061/2011/812540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Warnmark A, Wikstrom A, Wright AP, Gustafsson JA, Hard T (2001) The N-terminal regions of estrogen receptor alpha and beta are unstructured in vitro and show different TBP binding properties. J Biol Chem 276(49):45939–45944. https://doi.org/10.1074/jbc.M107875200

    Article  CAS  PubMed  Google Scholar 

  62. Rajbhandari P, Finn G, Solodin NM, Singarapu KK, Sahu SC, Markley JL, Kadunc KJ, Ellison-Zelski SJ, Kariagina A, Haslam SZ, Lu KP, Alarid ET (2012) Regulation of estrogen receptor alpha N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol Cell Biol 32(2):445–457. https://doi.org/10.1128/MCB.06073-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cowley SM, Parker MG (1999) A comparison of transcriptional activation by ER alpha and ER beta. J Steroid Biochem Mol Biol 69(1–6):165–175

    Article  CAS  PubMed  Google Scholar 

  64. Delaunay F, Pettersson K, Tujague M, Gustafsson JA (2000) Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Mol Pharmacol 58(3):584–590

    Article  CAS  PubMed  Google Scholar 

  65. McInerney EM, Weis KE, Sun J, Mosselman S, Katzenellenbogen BS (1998) Transcription activation by the human estrogen receptor subtype beta (ER beta) studied with ER beta and ER alpha receptor chimeras. Endocrinology 139(11):4513–4522. https://doi.org/10.1210/endo.139.11.6298

    Article  CAS  PubMed  Google Scholar 

  66. Huang J, Li X, Maguire CA, Hilf R, Bambara RA, Muyan M (2005) Binding of estrogen receptor beta to estrogen response element in situ is independent of estradiol and impaired by its amino terminus. Mol Endocrinol 19(11):2696–2712. https://doi.org/10.1210/me.2005-0120

    Article  CAS  PubMed  Google Scholar 

  67. Martinkovich S, Shah D, Planey SL, Arnott JA (2014) Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 9:1437–1452. https://doi.org/10.2147/CIA.S66690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jordan C (2002) Historical perspective on hormonal therapy of advanced breast cancer. Clin Ther 24(Suppl A):A3–A16

    Article  CAS  PubMed  Google Scholar 

  69. Love RR, Barden HS, Mazess RB, Epstein S, Chappell RJ (1994) Effect of tamoxifen on lumbar spine bone-mineral density in postmenopausal women after 5 years. Arch Intern Med 154(22):2585–2588. https://doi.org/10.1001/archinte.154.22.2585

    Article  CAS  PubMed  Google Scholar 

  70. Love RR, Wiebe DA, Feyzi JM, Newcomb PA, Chappell RJ (1994) Effects of tamoxifen on cardiovascular risk factors in postmenopausal women after 5 years of treatment. J Natl Cancer Inst 86(20):1534–1539

    Article  CAS  PubMed  Google Scholar 

  71. Turner RT, Wakley GK, Hannon KS, Bell NH (1988) Tamoxifen inhibits osteoclast-mediated resorption of trabecular bone in ovarian hormone-deficient rats. Endocrinology 122(3):1146–1150. https://doi.org/10.1210/endo-122-3-1146

    Article  CAS  PubMed  Google Scholar 

  72. Ward RL, Morgan G, Dalley D, Kelly PJ (1993) Tamoxifen reduces bone turnover and prevents lumbar spine and proximal femoral bone loss in early postmenopausal women. Bone Miner 22(2):87–94

    Article  CAS  PubMed  Google Scholar 

  73. Davies P, Syne JS, Nicholson RI (1979) Effects of estradiol and the antiestrogen tamoxifen on steroid hormone receptor concentration and nuclear ribonucleic acid polymerase activities in rat uteri. Endocrinology 105(6):1336–1342. https://doi.org/10.1210/endo-105-6-1336

    Article  CAS  PubMed  Google Scholar 

  74. Martin L, Middleton E (1978) Prolonged oestrogenic and mitogenic activity of tamoxifen in the ovariectomized mouse. J Endocrinol 78(1):125–129

    Article  CAS  PubMed  Google Scholar 

  75. Jordan VC (2004) Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5(3):207–213

    Article  CAS  PubMed  Google Scholar 

  76. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. https://doi.org/10.1038/nrc2713

    Article  CAS  PubMed  Google Scholar 

  77. Ali S, Buluwela L, Coombes RC (2011) Antiestrogens and their therapeutic applications in breast cancer and other diseases. Annu Rev Med 62:217–232. https://doi.org/10.1146/annurev-med-052209-100305

    Article  CAS  PubMed  Google Scholar 

  78. McDonnell DP, Wardell SE, Norris JD (2015) Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J Med Chem 58(12):4883–4887. https://doi.org/10.1021/acs.jmedchem.5b00760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Howell A (2006) Pure oestrogen antagonists for the treatment of advanced breast cancer. Endocr Relat Cancer 13(3):689–706. https://doi.org/10.1677/erc.1.00846

    Article  CAS  PubMed  Google Scholar 

  80. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, Bevers TB, Fehrenbacher L, Pajon ER, Wade JL 3rd, Robidoux A, Margolese RG, James J, Runowicz CD, Ganz PA, Reis SE, McCaskill-Stevens W, Ford LG, Jordan VC, Wolmark N, National Surgical Adjuvant B, Bowel P (2010) Update of the National Surgical Adjuvant Breast and Bowel Project study of tamoxifen and raloxifene (STAR) P-2 trial: preventing breast cancer. Cancer Prev Res (Phila) 3(6):696–706. https://doi.org/10.1158/1940-6207.CAPR-10-0076

    Article  CAS  Google Scholar 

  81. Deshmane V, Krishnamurthy S, Melemed AS, Peterson P, Buzdar AU (2007) Phase III double-blind trial of arzoxifene compared with tamoxifen for locally advanced or metastatic breast cancer. J Clin Oncol 25(31):4967–4973. https://doi.org/10.1200/JCO.2006.09.5992

    Article  CAS  PubMed  Google Scholar 

  82. Palkowitz AD, Glasebrook AL, Thrasher KJ, Hauser KL, Short LL, Phillips DL, Muehl BS, Sato M, Shetler PK, Cullinan GJ, Pell TR, Bryant HU (1997) Discovery and synthesis of [6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-2-(4-hydroxyphenyl)]b enzo[b]thiophene: a novel, highly potent, selective estrogen receptor modulator. J Med Chem 40(10):1407–1416. https://doi.org/10.1021/jm970167b

    Article  CAS  PubMed  Google Scholar 

  83. Suh N, Glasebrook AL, Palkowitz AD, Bryant HU, Burris LL, Starling JJ, Pearce HL, Williams C, Peer C, Wang Y, Sporn MB (2001) Arzoxifene, a new selective estrogen receptor modulator for chemoprevention of experimental breast cancer. Cancer Res 61(23):8412–8415

    CAS  PubMed  Google Scholar 

  84. Wardell SE, Nelson ER, Chao CA, McDonnell DP (2013) Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for treatment of advanced disease. Clin Cancer Res 19(9):2420–2431. https://doi.org/10.1158/1078-0432.CCR-12-3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barsalou A, Gao W, Anghel SI, Carriere J, Mader S (1998) Estrogen response elements can mediate agonist activity of anti-estrogens in human endometrial Ishikawa cells. J Biol Chem 273(27):17138–17146

    Article  CAS  PubMed  Google Scholar 

  86. Bowler J, Lilley TJ, Pittam JD, Wakeling AE (1989) Novel steroidal pure antiestrogens. Steroids 54(1):71–99

    Article  CAS  PubMed  Google Scholar 

  87. Van de Velde P, Nique F, Bouchoux F, Bremaud J, Hameau MC, Lucas D, Moratille C, Viet S, Philibert D, Teutsch G (1994) RU 58,668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Mol Biol 48(2–3):187–196

    Article  PubMed  Google Scholar 

  88. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51(15):3867–3873

    CAS  PubMed  Google Scholar 

  89. Dauvois S, Danielian PS, White R, Parker MG (1992) Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci U S A 89(9):4037–4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El Khissiin A, Leclercq G (1999) Implication of proteasome in estrogen receptor degradation. FEBS Lett 448(1):160–166

    Article  PubMed  Google Scholar 

  91. Gibson MK, Nemmers LA, Beckman WC Jr, Davis VL, Curtis SW, Korach KS (1991) The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology 129(4):2000–2010. https://doi.org/10.1210/endo-129-4-2000

    Article  CAS  PubMed  Google Scholar 

  92. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276(38):35684–35692. https://doi.org/10.1074/jbc.M101097200

    Article  CAS  PubMed  Google Scholar 

  93. Howell A, Robertson JF, Abram P, Lichinitser MR, Elledge R, Bajetta E, Watanabe T, Morris C, Webster A, Dimery I, Osborne CK (2004) Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J Clin Oncol 22(9):1605–1613. https://doi.org/10.1200/JCO.2004.02.112

    Article  CAS  PubMed  Google Scholar 

  94. Di Leo A, Jerusalem G, Petruzelka L, Torres R, Bondarenko IN, Khasanov R, Verhoeven D, Pedrini JL, Smirnova I, Lichinitser MR, Pendergrass K, Garnett S, Lindemann JP, Sapunar F, Martin M (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28(30):4594–4600. https://doi.org/10.1200/JCO.2010.28.8415

    Article  CAS  PubMed  Google Scholar 

  95. Di Leo A, Jerusalem G, Petruzelka L, Torres R, Bondarenko IN, Khasanov R, Verhoeven D, Pedrini JL, Smirnova I, Lichinitser MR, Pendergrass K, Malorni L, Garnett S, Rukazenkov Y, Martin M (2014) Final overall survival: fulvestrant 500 mg vs 250 mg in the randomized CONFIRM trial. J Natl Cancer Inst 106(1):djt337. https://doi.org/10.1093/jnci/djt337

    Article  CAS  PubMed  Google Scholar 

  96. Robertson JF, Lindemann J, Garnett S, Anderson E, Nicholson RI, Kuter I, Gee JM (2014) A good drug made better: the fulvestrant dose-response story. Clin Breast Cancer 14(6):381–389. https://doi.org/10.1016/j.clbc.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  97. Bentrem D, Dardes R, Liu H, MacGregor-Schafer J, Zapf J, Jordan V (2001) Molecular mechanism of action at estrogen receptor alpha of a new clinically relevant antiestrogen (GW7604) related to tamoxifen. Endocrinology 142(2):838–846. https://doi.org/10.1210/endo.142.2.7932

    Article  CAS  PubMed  Google Scholar 

  98. Lai A, Kahraman M, Govek S, Nagasawa J, Bonnefous C, Julien J, Douglas K, Sensintaffar J, Lu N, Lee KJ, Aparicio A, Kaufman J, Qian J, Shao G, Prudente R, Moon MJ, Joseph JD, Darimont B, Brigham D, Grillot K, Heyman R, Rix PJ, Hager JH, Smith ND (2015) Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J Med Chem 58(12):4888–4904. https://doi.org/10.1021/acs.jmedchem.5b00054

    Article  CAS  PubMed  Google Scholar 

  99. Wijayaratne AL, Nagel SC, Paige LA, Christensen DJ, Norris JD, Fowlkes DM, McDonnell DP (1999) Comparative analyses of mechanistic differences among antiestrogens. Endocrinology 140(12):5828–5840. https://doi.org/10.1210/endo.140.12.7164

    Article  CAS  PubMed  Google Scholar 

  100. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson JA, Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18(17):4608–4618. https://doi.org/10.1093/emboj/18.17.4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grese TA, Cho S, Finley DR, Godfrey AG, Jones CD, Lugar CW 3rd, Martin MJ, Matsumoto K, Pennington LD, Winter MA, Adrian MD, Cole HW, Magee DE, Phillips DL, Rowley ER, Short LL, Glasebrook AL, Bryant HU (1997) Structure-activity relationships of selective estrogen receptor modulators: modifications to the 2-arylbenzothiophene core of raloxifene. J Med Chem 40(2):146–167. https://doi.org/10.1021/jm9606352

    Article  CAS  PubMed  Google Scholar 

  102. Dayan G, Lupien M, Auger A, Anghel SI, Rocha W, Croisetiere S, Katzenellenbogen JA, Mader S (2006) Tamoxifen and raloxifene differ in their functional interactions with aspartate 351 of estrogen receptor alpha. Mol Pharmacol 70(2):579–588. https://doi.org/10.1124/mol.105.021931

    Article  CAS  PubMed  Google Scholar 

  103. MacGregor Schafer J, Liu H, Bentrem DJ, Zapf JW, Jordan VC (2000) Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res 60(18):5097–5105

    CAS  PubMed  Google Scholar 

  104. Pike AC, Brzozowski AM, Walton J, Hubbard RE, Thorsell AG, Li YL, Gustafsson JA, Carlquist M (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9(2):145–153

    Article  CAS  PubMed  Google Scholar 

  105. Arao Y, Hamilton KJ, Ray MK, Scott G, Mishina Y, Korach KS (2011) Estrogen receptor alpha AF-2 mutation results in antagonist reversal and reveals tissue selective function of estrogen receptor modulators. Proc Natl Acad Sci U S A 108(36):14986–14991. https://doi.org/10.1073/pnas.1109180108

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lupien M, Jeyakumar M, Hebert E, Hilmi K, Cotnoir-White D, Loch C, Auger A, Dayan G, Pinard GA, Wurtz JM, Moras D, Katzenellenbogen J, Mader S (2007) Raloxifene and ICI182,780 increase estrogen receptor-alpha association with a nuclear compartment via overlapping sets of hydrophobic amino acids in activation function 2 helix 12. Mol Endocrinol 21(4):797–816. https://doi.org/10.1210/me.2006-0074

    Article  CAS  PubMed  Google Scholar 

  107. Mahfoudi A, Roulet E, Dauvois S, Parker MG, Wahli W (1995) Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc Natl Acad Sci U S A 92(10):4206–4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Norris JD, Fan D, Stallcup MR, McDonnell DP (1998) Enhancement of estrogen receptor transcriptional activity by the coactivator GRIP-1 highlights the role of activation function 2 in determining estrogen receptor pharmacology. J Biol Chem 273(12):6679–6688

    Article  CAS  PubMed  Google Scholar 

  109. Hoffmann J, Bohlmann R, Heinrich N, Hofmeister H, Kroll J, Kunzer H, Lichtner RB, Nishino Y, Parczyk K, Sauer G, Gieschen H, Ulbrich HF, Schneider MR (2004) Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J Natl Cancer Inst 96(3):210–218

    Article  CAS  PubMed  Google Scholar 

  110. Wu YL, Yang X, Ren Z, McDonnell DP, Norris JD, Willson TM, Greene GL (2005) Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell 18(4):413–424. https://doi.org/10.1016/j.molcel.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  111. Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5(6):343–357. https://doi.org/10.1124/mi.5.6.7

    Article  PubMed  Google Scholar 

  112. Johnson AB, O’Malley BW (2012) Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348(2):430–439. https://doi.org/10.1016/j.mce.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  113. Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25(1):45–71. https://doi.org/10.1210/er.2003-0023

    Article  CAS  PubMed  Google Scholar 

  114. Burandt E, Jens G, Holst F, Janicke F, Muller V, Quaas A, Choschzick M, Wilczak W, Terracciano L, Simon R, Sauter G, Lebeau A (2013) Prognostic relevance of AIB1 (NCoA3) amplification and overexpression in breast cancer. Breast Cancer Res Treat 137(3):745–753. https://doi.org/10.1007/s10549-013-2406-4

    Article  CAS  PubMed  Google Scholar 

  115. Metivier R, Penot G, Flouriot G, Pakdel F (2001) Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol 15(11):1953–1970. https://doi.org/10.1210/mend.15.11.0727

    Article  CAS  PubMed  Google Scholar 

  116. Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8(1):21–30. https://doi.org/10.1210/mend.8.1.8152428

    Article  CAS  PubMed  Google Scholar 

  117. Merot Y, Metivier R, Penot G, Manu D, Saligaut C, Gannon F, Pakdel F, Kah O, Flouriot G (2004) The relative contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor alpha transcriptional activity depends upon the differentiation stage of the cell. J Biol Chem 279(25):26184–26191. https://doi.org/10.1074/jbc.M402148200

    Article  CAS  PubMed  Google Scholar 

  118. Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E, Katzenellenbogen BS, Stallcup MR, Kushner PJ (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12(10):1605–1618. https://doi.org/10.1210/mend.12.10.0185

    Article  CAS  PubMed  Google Scholar 

  119. Keeton EK, Brown M (2005) Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 19(6):1543–1554. https://doi.org/10.1210/me.2004-0395

    Article  CAS  PubMed  Google Scholar 

  120. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A 95(6):2920–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11(6):657–666. https://doi.org/10.1210/mend.11.6.0009

    Article  CAS  PubMed  Google Scholar 

  122. Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev 32(5):597–622. https://doi.org/10.1210/er.2010-0016

    Article  CAS  PubMed  Google Scholar 

  123. Ali S, Metzger D, Bornert JM, Chambon P (1993) Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12(3):1153–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S (2008) Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol 40(4):173–184. https://doi.org/10.1677/JME-07-0165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Suresh PS, Ma S, Migliaccio A, Chen G (2014) Protein-tyrosine phosphatase H1 increases breast cancer sensitivity to antiestrogens by dephosphorylating estrogen receptor at Tyr537. Mol Cancer Ther 13(1):230–238. https://doi.org/10.1158/1535-7163.MCT-13-0610

    Article  CAS  PubMed  Google Scholar 

  126. Ascenzi P, Bocedi A, Marino M (2006) Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Asp Med 27(4):299–402. https://doi.org/10.1016/j.mam.2006.07.001

    Article  CAS  Google Scholar 

  127. Hilmi K, Hussein N, Mendoza-Sanchez R, El-Ezzy M, Ismail H, Durette C, Bail M, Rozendaal MJ, Bouvier M, Thibault P, Gleason JL, Mader S (2012) Role of SUMOylation in full antiestrogenicity. Mol Cell Biol 32(19):3823–3837. https://doi.org/10.1128/MCB.00290-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11(3):695–707

    Article  CAS  PubMed  Google Scholar 

  129. Borras M, Laios I, el Khissiin A, Seo HS, Lempereur F, Legros N, Leclercq G (1996) Estrogenic and antiestrogenic regulation of the half-life of covalently labeled estrogen receptor in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 57(3–4):203–213

    Article  CAS  PubMed  Google Scholar 

  130. Marsaud V, Gougelet A, Maillard S, Renoir JM (2003) Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 17(10):2013–2027. https://doi.org/10.1210/me.2002-0269

    Article  CAS  PubMed  Google Scholar 

  131. Fan M, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol Endocrinol 17(3):356–365. https://doi.org/10.1210/me.2002-0323

    Article  CAS  PubMed  Google Scholar 

  132. Wardell SE, Marks JR, McDonnell DP (2011) The turnover of estrogen receptor alpha by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochem Pharmacol 82(2):122–130. https://doi.org/10.1016/j.bcp.2011.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nardone A, De Angelis C, Trivedi MV, Osborne CK, Schiff R (2015) The changing role of ER in endocrine resistance. Breast 24(Suppl 2):S60–S66. https://doi.org/10.1016/j.breast.2015.07.015

    Article  PubMed  Google Scholar 

  134. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R (2015) ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol 12(10):573–583. https://doi.org/10.1038/nrclinonc.2015.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang QX, Borg A, Wolf DM, Oesterreich S, Fuqua SA (1997) An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res 57(7):1244–1249

    CAS  PubMed  Google Scholar 

  136. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, Ferrer-Lozano J, Perez-Fidalgo JA, Cristofanilli M, Gomez H, Arteaga CL, Giltnane J, Balko JM, Cronin MT, Jarosz M, Sun J, Hawryluk M, Lipson D, Otto G, Ross JS, Dvir A, Soussan-Gutman L, Wolf I, Rubinek T, Gilmore L, Schnitt S, Come SE, Pusztai L, Stephens P, Brown M, Miller VA (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20(7):1757–1767. https://doi.org/10.1158/1078-0432.CCR-13-2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning Y, Hodges L, Gursky A, Siddiqui J, Tomlins SA, Roychowdhury S, Pienta KJ, Kim SY, Roberts JS, Rae JM, Van Poznak CH, Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan AM (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451. https://doi.org/10.1038/ng.2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445. https://doi.org/10.1038/ng.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ, Toy W, Green B, Panchamukhi S, Katzenellenbogen BS, Tajkhorshid E, Griffin PR, Shen Y, Chandarlapaty S, Katzenellenbogen JA, Greene GL (2016) Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. elife 5. https://doi.org/10.7554/eLife.12792

  140. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L, Jeselsohn R, Yelensky R, Brown M, Miller VA, Sarid D, Rizel S, Klein B, Rubinek T, Wolf I (2013) D538G mutation in estrogen receptor-alpha: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73(23):6856–6864. https://doi.org/10.1158/0008-5472.CAN-13-1197

    Article  CAS  PubMed  Google Scholar 

  141. Nettles KW, Bruning JB, Gil G, Nowak J, Sharma SK, Hahm JB, Kulp K, Hochberg RB, Zhou H, Katzenellenbogen JA, Katzenellenbogen BS, Kim Y, Joachmiak A, Greene GL (2008) NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat Chem Biol 4(4):241–247. https://doi.org/10.1038/nchembio.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Burris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Vera, I.M.S., S. Wanninayake, U., Burris, T.P. (2019). Structural Insights into Estrogen Receptors and Antiestrogen Therapies. In: Zhang, X. (eds) Estrogen Receptor and Breast Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-99350-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99350-8_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-99349-2

  • Online ISBN: 978-3-319-99350-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics