Skip to main content

Indirect Association Rules Mining in Clinical Texts

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2018)

Abstract

This paper presents a method for structured information extraction from patient status description. The proposed approach is based on indirect association rules mining (IARM) in clinical text. This method is language independent and unsupervised, that makes it suitable for applications in low resource languages. For experiments are used data from Bulgarian Diabetes Register. The Register is automatically generated from pseudonymized reimbursement requests (outpatient records) submitted to the Bulgarian National Health Insurance Fund in 2010–2016 for more than 5 million citizens yearly. Experiments were run on data collections with patient status data only. The great variety of possible values (conditions) makes this task challenging. The classical frequent itemsets mining algorithms identify just few frequent pairs only even for small minimal support. The results of the proposed IARM method show that attribute-value pairs of anatomical organs/systems and their condition can be identified automatically. IARM approach allows extraction of indirect relations between item pairs with support below the minimal support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SNOMED, https://www.snomed.org/.

  2. 2.

    Medical Subject Headings—MESH, https://www.nlm.nih.gov/mesh/.

  3. 3.

    UMLS, https://www.nlm.nih.gov/research/umls/.

  4. 4.

    http://icd9.chrisendres.com/.

  5. 5.

    http://apps.who.int/classifications/icd10/browse/2016/en#/.

  6. 6.

    Laurence, A. AntConc (Version 3.4. 4w)(Computer software). Tokyo, Japan:Waseda University. http://www.laurenceanthony.net/ (2014).

  7. 7.

    http://www.philippe-fournier-viger.com/spmf/index.php.

References

  1. Abdullah, Z., Herawan, T., Ahmad, N., Ghazali, R., Deris, M.M.: Mining indirect least association rule from students’ examination datasets. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 783–797. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_58

    Chapter  Google Scholar 

  2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference very large data bases, VLDB. vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  3. Boytcheva, S., Angelova, G., Angelov, Z., Tcharaktchiev, D.: Integrating data analysis tools for better treatment of diabetic patients. CEUR Workshop Proc. 2022, 229–236 (2017)

    Google Scholar 

  4. Boytcheva, S., Nikolova, I., Angelova, G.: Mining association rules from clinical narratives. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pp. 130–138 (2017)

    Google Scholar 

  5. Boytcheva, S., Nikolova, I., Angelova, G., Angelov, Z.: Identification of risk factors in clinical texts through association rules. In: Proceedings of the Biomedical NLP Workshop associated with RANLP, pp. 64–72 (2017)

    Google Scholar 

  6. Chen, L., Bhowmick, S.S., Li, J.: Mining temporal indirect associations. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 425–434. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_49

    Chapter  Google Scholar 

  7. Conrado, M., Pardo, T., Rezende, S.: A machine learning approach to automatic term extraction using a rich feature set. In: Proceedings of the 2013 NAACL HLT Student Research Workshop, pp. 16–23 (2013)

    Google Scholar 

  8. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1), 3389–3393 (2014)

    MATH  Google Scholar 

  9. Grahne, G., Zhu, J.: High performance mining of maximal frequent itemsets. In: 6th International Workshop on High Performance Data Mining. vol. 16, p. 34 (2003)

    Google Scholar 

  10. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web (2017)

    Google Scholar 

  11. Ha, H.Y., Chen, S.C., Shyu, M.L.: Utilizing indirect associations in multimedia semantic retrieval. In: 2015 IEEE International Conference on Multimedia Big Data (BigMM), pp. 72–79. IEEE (2015)

    Google Scholar 

  12. Hamano, S., Sato, M.: Mining indirect association rules. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, pp. 106–116. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30185-1_12

    Chapter  Google Scholar 

  13. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  14. Heylen, K., De Hertog, D.: Automatic term extraction. Handb. Terminol. 1(01), 9–27 (2015)

    Google Scholar 

  15. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016)

    Article  Google Scholar 

  16. Kang, S.M., Wagacha, P.W.: Extracting diagnosis patterns in electronic medical records using association rule mining. Intern. J. Comput. Appl. 108(15), 19–26 (2014)

    Google Scholar 

  17. Kazienko, P.: Mining indirect association rules for web recommendation. Intern. J. Appl. Math. Comput. Sci. 19(1), 165–186 (2009)

    Article  Google Scholar 

  18. Manimaran, J., Velmurugan, T.: A survey of association rule mining in text applications. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–5. IEEE (2013)

    Google Scholar 

  19. Nakagawa, H., Mori, T.: A simple but powerful automatic term extraction method. In: COLING-02 on COMPUTERM 2002: Second International Workshop on Computational Terminology-Volume 14, pp. 1–7. Association for Computational Linguistics (2002)

    Google Scholar 

  20. Nakov, P.: Bulstem: design and evaluation of inflectional stemmer for Bulgarian. In: Workshop on Balkan Language Resources and Tools (Balkan Conference in Informatics) (2003)

    Google Scholar 

  21. Névéol, A., Dalianis, H., Velupillai, S., Savova, G., Zweigenbaum, P.: Clinical natural language processing in languages other than english: opportunities and challenges. J. Biomed. Semant. 9(1), 12 (2018)

    Article  Google Scholar 

  22. Tan, P.N., Kumar, V.: Mining indirect associations in web data. In: International Workshop on Mining Web Log Data Across All Customers Touch Points, pp. 145–166. Springer (2001)

    Google Scholar 

  23. Tan, P.N., Kumar, V.: Discovery of indirect associations from web usage data. In: Zhong, N., Liu, J., Yao, Y. (eds.) Web Intelligence, pp. 128–152. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05320-1_7

    Chapter  Google Scholar 

  24. Tan, P.-N., Kumar, V., Srivastava, J.: Indirect association: mining higher order dependencies in data. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 632–637. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_77

    Chapter  Google Scholar 

  25. Tsuruoka, Y., Miwa, M., Hamamoto, K., Tsujii, J., Ananiadou, S.: Discovering and visualizing indirect associations between biomedical concepts. Bioinformatics 27(13), i111–i119 (2011)

    Article  Google Scholar 

  26. Wan, Q., An, A.: An efficient approach to mining indirect associations. J. Intell. Inf. Syst. 27(2), 135–158 (2006)

    Article  MathSciNet  Google Scholar 

  27. Wright, A., Chen, E.S., Maloney, F.L.: An automated technique for identifying associations between medications, laboratory results and problems. J. Biomed. Inform. 43(6), 891–901 (2010). https://doi.org/10.1016/j.jbi.2010.09.009

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the grant SpecialIZed Data MIning MethoDs Based on Semantic Attributes (IZIDA), funded by the Bulgarian National Science Fund in 2017–2019. The team acknowledges the support of Medical University - Sofia, the Bulgarian Ministry of Health and the Bulgarian National Health Insurance Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetla Boytcheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boytcheva, S. (2018). Indirect Association Rules Mining in Clinical Texts. In: Agre, G., van Genabith, J., Declerck, T. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2018. Lecture Notes in Computer Science(), vol 11089. Springer, Cham. https://doi.org/10.1007/978-3-319-99344-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99344-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99343-0

  • Online ISBN: 978-3-319-99344-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics