Skip to main content

Ionospheric Space Weather Forecasting and Modelling

  • Chapter
  • First Online:
Ionospheric Space Weather

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Ionospheric weather prediction, specification, forecasting and modelling techniques that enable the realization of effective space weather products are described. In the future these may eventually be adopted and implemented by decision-making authorities for space environment specifications, warnings, and forecasts, all of which need to be timely, accurate, and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Araujo-Pradere EA, Fuller-Rowell TJ (2002) STORM: an empirical storm-time ionospheric correction model 2. Validation. Radio Sci. https://doi.org/10.1029/2002rs002620

    Google Scholar 

  • Araujo-Pradere EA, Fuller-Rowell TJ, Bilitza D (2003) Validation of the STORM response in IRI2000. J Geophys Res. https://doi.org/10.1029/2002ja009720

  • Badeke R, Borries C, Hoque MM et al (2018) Empirical forecast of quiet time ionospheric total electron content maps over Europe. Adv Space Res. https://doi.org/10.1016/j.asr.2018.04.010

    Article  Google Scholar 

  • Bilitza D, Altadill D, Truhlik V et al (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15:418–429. https://doi.org/10.1002/2016sw001593

    Article  Google Scholar 

  • Cander LR, Stanković S, Milosavljević M (1998) Dynamic ionospheric prediction by neural networks. In: AI applications in solar-terrestrial physics proceedings, ESA WPP-148:225–228

    Google Scholar 

  • Cander LR, Milosavljević M, TomaÅ¡ević S (2003a) Ionospheric storm forecasting technique by artificial neural network. Annals of Geofis 46(4):719–724

    Google Scholar 

  • Cander LR, Bamford RA, Hickford JG (2003b) Nowcasting and forecasting the foF2, MUF(3000)F2 and TEC based on empirical models and real-time data. IEE Conference Proceedings 491(1):139–142

    Google Scholar 

  • Cander LR (2015) Forecasting foF2 and MUF (3000) F2 ionospheric characteristics-a challenging space weather frontier. Adv Space Res 56:1973–1981

    Article  Google Scholar 

  • Daniel O (2018) GPS modeling of the ionosphere using computer neural networks. In: Rustamov RB (ed) Multifunctional operation and application of GPS. https://doi.org/10.5772/intechopen.75087

    Google Scholar 

  • Fausett L (1994) Fundamentals of neural networks. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Galkin IA, Reinisch BW, Huang X et al (2012) Assimilation of GIRO data into a real-time IRI. Radio Sci. https://doi.org/10.1029/2011rs004952

    Article  Google Scholar 

  • Haykin S (1994) Neural networks—a comprehensive foundation. Macmillan College Publishing Company, New York

    Google Scholar 

  • ITU-R (1997) Recommendations P Series-Part 1. International Telecommunications Union, Geneva

    Google Scholar 

  • Kersley L, Malan D, Pryse ES et al (2004) Total electron content—a key parameter in propagation: measurement and use in ionospheric imaging. Ann Geofis 47:1067–1091

    Google Scholar 

  • Lamming X, LR Cander (1999) Monthly median foF2 modelling COST251 area by neural networks. Phys Chem Earth 24:349–354

    Google Scholar 

  • Levi MF, LR Cander, Dick MI et al (1999) Real-time ionospheric forecasting. IRI News 6:1–5

    Google Scholar 

  • Liu R, Liu S, Xu Z et al (2006) Application of autocorrelation method on ionospheric short-term forecasting in China. Chin Sci Bull 51(3):352–357. https://doi.org/10.1007/s11434-006-0352-9

    Article  Google Scholar 

  • Mir Reza GR, Voosoghi B (2016) Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content. J Atmos Sol-Terr Phys 149:21–30

    Article  Google Scholar 

  • Moreno EM, Rigo AG, Hernández-Pajares M et al (2018) TEC forecasting based on manifold trajectories. Remote Sens:10. https://doi.org/10.3390/rs10070988

    Article  Google Scholar 

  • Muhtarov P, Kutiev I (1999) Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data. Radio Sci 34:459–464

    Article  Google Scholar 

  • Oliver MA, Webster R (1990) Kriging: a method of interpolation for geographical information systems. Int J Geograph Info Sys 4:313–332

    Google Scholar 

  • Piggott WR, Rawer K (1972a) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23. National Oceanic and Atmospheric Administration, Boulder

    Google Scholar 

  • Piggott WR, Rawer K (1972b) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23A. Second Edition, Revision of Chaps. 1–4. National Oceanic and Atmospheric Administration, Boulder

    Google Scholar 

  • Pezzopane M, Pietrella M, Pignatelli A et al (2011) Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling. Radio Sci 46 RS5009. https://doi.org/10.1029/rs004697

  • Pezzopane M, Pietrella M, Pignatelli A et al (2013) Testing the three-dimensional IRI-SIRMUP-P mapping of the ionosphere for disturbed periods. Adv Space Res 52:1726–1736

    Article  Google Scholar 

  • Poole AWV, McKinnell LA (1998) Short term prediction of foF2 using neural networks. WDC Report UAG-105, pp 109–111

    Google Scholar 

  • Radicella SM (2010) The NeQuick model genesis, uses and evolution. Ann Geofis 52:239–243

    Google Scholar 

  • Tulunay E, Ozkaptan C, Tulunay Y (2000) Temporal and spatial forecasting of the foF2 values up to twenty four hours in advance. Phys Chem Earth 25:281–285

    Article  Google Scholar 

  • Tulunay E, Senalp ET, LR Cander et al (2004) Development of algorithms and software for forecasting, nowcasting and variability of TEC. Ann Geofis 47:1201–1214

    Google Scholar 

  • Vapnik V (1999) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  • Wintoft P, LR Cander (2000) Twenty-four hour predictions of foF2 using time delay neural networks. Radio Sci 35(2):395–408

    Google Scholar 

Relevant Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana R. Cander .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cander, L.R. (2019). Ionospheric Space Weather Forecasting and Modelling. In: Ionospheric Space Weather. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-99331-7_6

Download citation

Publish with us

Policies and ethics