Skip to main content

Pro-Angiogenic Regenerative Therapies for the Damaged Brain: A Tissue Engineering Approach

  • Chapter
  • First Online:
Book cover Biophysical Regulation of Vascular Differentiation and Assembly

Abstract

Angiogenesis in the stroke brain has been increasingly recognized as a key player in tissue repair, endogenous neurogenesis, and functional recovery. Important findings in the last decade have shown that promoting the formation of a mature and functional vascular network in a wound that is dynamic in space and time represents one of the biggest challenges in pro-repair therapies after stroke. Recent preclinical studies of therapeutic angiogenesis have been introducing tissue engineering-based systems that allow precisely controlled delivery of provascular drugs directly to the site of damage, without inducing the commonly associated side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, K., Setoguchi, Y., Hayashi, T., & Itoyama, Y. (1997). Dissociative expression of adenoviral-mediated E. coli LacZ gene between ischemic and reperfused rat brains. Neuroscience Letters, 226, 53–56.

    Article  Google Scholar 

  2. Allen, C. M. (1984). Predicting the outcome of acute stroke: A prognostic score. Journal of Neurology, Neurosurgery, and Psychiatry, 47, 475–480.

    Article  Google Scholar 

  3. Anderson, M. A., Burda, J. E., Ren, Y., Ao, Y., O’Shea, T. M., Kawaguchi, R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature, 532, 195–200.

    Article  ADS  Google Scholar 

  4. Anderson, S. M., Siegman, S. N., & Segura, T. (2011). The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials, 32, 7432–7443.

    Article  Google Scholar 

  5. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., et al. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135, e146–e603.

    Article  Google Scholar 

  6. Bible, E., Qutachi, O., Chau, D. Y. S., Alexander, M. R., Shakesheff, K. M., & Modo, M. (2012). Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials, 33, 7435–7346.

    Article  Google Scholar 

  7. Castellanos, M., Sobrino, T., & Castillo, J. (2006). Evolving paradigms for neuroprotection: Molecular identification of ischemic penumbra. Cerebrovascular Diseases, 21(Suppl 2), 71–79.

    Article  Google Scholar 

  8. Chopp, M., Li, Y., & Zhang, J. (2008). Plasticity and remodeling of brain. Journal of the Neurological Sciences, 265, 97–101.

    Article  Google Scholar 

  9. del Zoppo, G. J., & Mabuchi, T. (2003). Cerebral microvessel responses to focal ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 879–894.

    Article  Google Scholar 

  10. Dirnagl, U., Iadecola, C., & Moskowitz, M. A. (1999). Pathobiology of ischaemic stroke: An integrated view. Trends in Neurosciences, 22, 391–397.

    Article  Google Scholar 

  11. Emerich, D. F., Silva, E., Ali, O., Mooney, D., Bell, W., Yu, S. J., et al. (2010). Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplantation, 19, 1063–1071.

    Article  Google Scholar 

  12. Granger, C. V., Hamilton, B. B., & Fiedler, R. C. (1992). Discharge outcome after stroke rehabilitation. Stroke, 23, 978–982.

    Article  Google Scholar 

  13. Greenberg, D. A. (1998). Angiogenesis and stroke. Drug News & Perspectives, 11, 265–270.

    Article  Google Scholar 

  14. Greenberg, D. A., & Jin, K. (2007). Regenerating the brain. International Review of Neurobiology, 77, 1–29.

    Article  Google Scholar 

  15. Hayashi, T., Abe, K., & Itoyama, Y. (1998). Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. Journal of Cerebral Blood Flow and Metabolism, 18, 887–895.

    Article  Google Scholar 

  16. Herz, J., Reitmeir, R., Hagen, S. I., Reinboth, B. S., Guo, Z., Zechariah, A., et al. (2012). Intracerebroventricularly delivered VEGF promotes contralesional corticorubral plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiology of Disease, 45, 1077–1085.

    Article  Google Scholar 

  17. Issa, R., Krupinski, J., Bujny, T., Kumar, S., Kaluza, J., & Kumar, P. (1999). Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Laboratory Investigation, 79, 417–425.

    Google Scholar 

  18. Jin, K., Mao, X. O., & Greenberg, D. A. (2006). Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via rho kinase signaling. Journal of Neurobiology, 66, 236–242.

    Article  Google Scholar 

  19. Ju, R., Wen, Y., Gou, R., Wang, Y., & Xu, Q. (2014). The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse. Cell Transplantation, 23(Suppl 1), S83–S95.

    Article  Google Scholar 

  20. Krupinski, J., Kaluza, J., Kumar, P., Kumar, S., & Wang, J. M. (1994). Role of angiogenesis in patients with cerebral ischemic stroke. Stroke, 25, 1794–1798.

    Article  Google Scholar 

  21. Ma, Y., Zechariah, A., Qu, Y., & Hermann, D. M. (2012). Effects of vascular endothelial growth factor in ischemic stroke. Journal of Neuroscience Research, 90, 1873–1882.

    Article  Google Scholar 

  22. Manoonkitiwongsa, P. S., Jackson-Friedman, C., McMillan, P. J., Schultz, R. L., Lyden, P. D., et al. (2001). Angiogenesis after stroke is correlated with increased numbers of macrophages: The clean-up hypothesis. Journal of Cerebral Blood Flow and Metabolism, 21, 1223–1231.

    Article  Google Scholar 

  23. Moshayedi, P., Nih, L. R., Llorente, I. L., Berg, A. R., Cinkornpumin, J., Lowry, W. E., et al. (2016). Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials, 105, 145–155.

    Article  Google Scholar 

  24. Nih, L. R., Deroide, N., Leré-Déan, C., Lerouet, D., Soustrat, M., Levy, B. I., et al. (2012). Neuroblast survival depends on mature vascular network formation after mouse stroke: Role of endothelial and smooth muscle progenitor cell co-administration. The European Journal of Neuroscience, 35, 1208–1217.

    Article  Google Scholar 

  25. Nih, L. R., Gojgini, S., Carmichael, S. T., & Segura, T. (2018). Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature Materials, 17, 642–651.

    Article  ADS  Google Scholar 

  26. Ohab, J. J., Fleming, S., Blesch, A., & Carmichael, S. T. (2006). A neurovascular niche for neurogenesis after stroke. The Journal of Neuroscience, 26, 13007–13016.

    Article  Google Scholar 

  27. Oshikawa, M., Okada, K., Kaneko, N., Sawamoto, K., Ajioka, I., et al. (2017). Affinity-immobilization of VEGF on laminin porous sponge enhances angiogenesis in the ischemic brain. Advanced Healthcare Materials, 6(11), 28488337.

    Google Scholar 

  28. Rodriguez-Yanez, M., Castellanos, M., Blanco, M., Mosquera, E., & Castillo, J. (2006). Vascular protection in brain ischemia. Cerebrovascular Diseases, 21(Suppl 2), 21–29.

    Article  Google Scholar 

  29. Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., et al. (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes & Development, 16, 2684–2698.

    Article  Google Scholar 

  30. Schmidt, R., Schmidt, H., & Fazekas, F. (2000). Vascular risk factors in dementia. Journal of Neurology, 247, 81–87.

    Article  Google Scholar 

  31. Slevin, M., Krupinski, J., Slowik, A., Kumar, P., Szczudlik, A., & Gaffney, J. (2000). Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke, 31, 1863–1870.

    Article  Google Scholar 

  32. Slevin, M., Kumar, P., Gaffney, J., Kumar, S., & Krupinski, J. (2006). Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clinical Science, 111, 171–183.

    Article  Google Scholar 

  33. Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., et al. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. The Journal of Clinical Investigation, 111, 1843–1851.

    Article  Google Scholar 

  34. Szpak, G. M., Lechowicz, W., Lewandowska, E., Bertrand, E., Wierzba-Bobrowicz, T., & Dymecki, J. (1999). Border zone neovascularization in cerebral ischemic infarct. Folia Neuropathologica, 37, 264–268.

    Google Scholar 

  35. van Bruggen, N., Thibodeaux, H., Palmer, J. T., Lee, W. P., Fu, L., Cairns, B., et al. (1999). VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. The Journal of Clinical Investigation, 104, 1613–1620.

    Article  Google Scholar 

  36. Wang, Y., Kilic, E., Kilic, U., Weber, B., Bassetti, C. L., Marti, H. H., et al. (2005). VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain, 128, 52–63.

    Article  Google Scholar 

  37. Yu, S. W., Friedman, B., Cheng, Q., & Lyden, P. D. (2007). Stroke-evoked angiogenesis results in a transient population of microvessels. Journal of Cerebral Blood Flow and Metabolism, 27, 755–763.

    Article  Google Scholar 

  38. Zhang, H., Hayashi, T., Tsuru, K., Deguchi, K., Nagahara, M., Hayakawa, S., et al. (2007). Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane-tetraethoxysilane. Brain Research, 1132, 29–35.

    Article  Google Scholar 

  39. Zhang, Z., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., et al. (2000). VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. The Journal of Clinical Investigation, 106, 829–838.

    Article  Google Scholar 

  40. Zhu, S., Nih, L., Carmichael, S. T., Lu, Y., & Segura, T. (2015). Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Advanced Materials, 27, 3620–3625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina R. Nih or Tatiana Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nih, L.R., Carmichael, S.T., Segura, T. (2018). Pro-Angiogenic Regenerative Therapies for the Damaged Brain: A Tissue Engineering Approach. In: Gerecht, S. (eds) Biophysical Regulation of Vascular Differentiation and Assembly. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-99319-5_7

Download citation

Publish with us

Policies and ethics