Skip to main content

Strategies for Tissue Engineering Vascularized Cardiac Patches to Treat Myocardial Infarctions

  • Chapter
  • First Online:
Book cover Biophysical Regulation of Vascular Differentiation and Assembly

Abstract

Heart disease is one of the leading causes of death in the western world. One of the most common forms of heart disease is myocardial infarction. As a result of infarction, the native myocardium is permanently damaged, and functionality is reduced. Due to the limited regenerative potential of the native myocardium, there exists a need to restore and repair the damaged zone. Cardiac tissue engineering offers a unique approach to regenerate the damaged myocardium. The high metabolic demands of the myocardium require dense vasculature to support the contractile properties of cardiomyocytes. Developing engineered cardiac tissues with dense, functional vasculature has therefore become an important goal of the field. Approaches to recapitulate the native myocardium typically involve combining multiple cell types, including cardiomyocytes (electrically excitable cells), endothelial cells (vessel development), and fibroblasts/mural cells (vasculature stabilization). These approaches have also utilized a number of different scaffold materials, culture conditions, and applied stimuli both to promote the functional development of the tissue and to increase the amount of vasculature present in the constructs. In this chapter, we will discuss the development of vascularized cardiac tissue and how all of these developments have drawn on and contributed to our understanding of how complex, multicellular interactions affect tissue development and vascular formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, K., Davey, R. E., Onishi, K., George, S., Salchert, K., Seib, F. P., et al. (2008). Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods, 5(7), 645–650. https://doi.org/10.1038/nmeth.1222

    Article  Google Scholar 

  2. Allen, P., Melero-Martin, J., & Bischoff, J. (2011). Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of Tissue Engineering and Regenerative Medicine, 5(4), 1–18. https://doi.org/10.1002/term.389

    Article  Google Scholar 

  3. Alt, E., Yan, Y., Gehmert, S., Song, Y. H., Altman, A., Gehmert, S., et al. (2011). Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biology of the Cell, 103(4), 197–208. https://doi.org/10.1042/BC20100117

    Article  Google Scholar 

  4. Bai, H., Forrester, J. V., & Zhao, M. (2015). DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. Cytokine, 55(1), 110–115. https://doi.org/10.1016/j.cyto.2011.03.003

    Article  Google Scholar 

  5. Baker, L. L., Chambers, R., DeMuth, S. K., & Villar, F. (1997). Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care, 20, 405–412.

    Article  Google Scholar 

  6. Baum, J., & Duffy, H. S. (2011). Fibroblasts and myofibroblasts: What are we talking about? Journal of Cardiovascular Pharmacology, 57(4), 376–379. https://doi.org/10.1097/FJC.0b013e3182116e39

    Article  Google Scholar 

  7. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., et al. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135, e146. https://doi.org/10.1161/CIR.0000000000000485

  8. Bhana, B., Iyer, R. K., Chen, W. L. K., Zhao, R., Sider, K. L., Likhitpanichkul, M., et al. (2010). Influence of substrate stiffness on the phenotype of heart cells. Biotechnology and Bioengineering, 105(6), 1148–1160. https://doi.org/10.1002/bit.22647

  9. Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A., & Tranquillo, R. T. (2009). Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Engineering. Part A, 15(10), 3099–3108. https://doi.org/10.1089/ten.TEA.2008.0502

    Article  Google Scholar 

  10. Blasi, A., Martino, C., Balducci, L., Saldarelli, M., Soleti, A., Navone, S. E., et al. (2011). Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vascular Cell, 3(1), 5. https://doi.org/10.1186/2045-824X-3-5

    Article  Google Scholar 

  11. Brennan, J., Lu, C. C., Norris, D. P., Rodriguez, T. A., Beddington, R. S., & Robertson, E. J. (2001). Nodal signaling in the epiblast patterns the early mouse embryo. Nature, 411(6840), 965–969.

    Article  ADS  Google Scholar 

  12. Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., et al. (2014). Chemically defined and small molecule-based generation of human cardiomyocytes. Nature Methods, 11(8), 855–860. https://doi.org/10.1038/nmeth.2999

    Article  Google Scholar 

  13. Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H., et al. (2007). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 100, 263–272. https://doi.org/10.1161/01.RES.0000257776.05673.ff

    Article  Google Scholar 

  14. Ceccarelli, J., Cheng, A., & Putnam, A. J. (2012). Mechanical strain controls endothelial patterning during angiogenic sprouting. Cellular and Molecular Bioengineering, 5(4), 463–473. https://doi.org/10.1007/s12195-012-0242-y

    Article  Google Scholar 

  15. Chen, X., Aledia, A. S., Popson, S. A., Him, L., Hughes, C. C. W., & George, S. C. (2010). Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Engineering. Part A, 16(2), 585–594. https://doi.org/10.1089/ten.tea.2009.0491

    Article  Google Scholar 

  16. Chiu, L. L. Y., & Radisic, M. (2010). Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 31(2), 226–241. https://doi.org/10.1016/j.biomaterials.2009.09.039

    Article  Google Scholar 

  17. Cho, S.-W., Yang, F., Son, S. M., Park, H. J., Green, J. J., Bogatyrev, S., et al. (2012). Therapeutic angiogenesis using genetically engineered human endothelial cells. Journal of Controlled Release, 160(3), 515–524. https://doi.org/10.1016/j.jconrel.2012.03.006

    Article  Google Scholar 

  18. Choi, Y. S., Dusting, G. J., Stubbs, S., Arunothayaraj, S., Han, X. L., Collas, P., et al. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 14(4), 878–889. https://doi.org/10.1111/j.1582-4934.2010.01009.x

    Article  Google Scholar 

  19. Chung, C. Y., Bien, H., & Entcheva, E. (2007). The role of cardiac tissue alignment in modulating electrical function. Journal of Cardiovascular Electrophysiology, 18(12), 1323–1329. https://doi.org/10.1111/j.1540-8167.2007.00959.x

    Article  Google Scholar 

  20. Cook, C. A., Huri, P. Y., Ginn, B. P., Gilbert-Honick, J., Somers, S. M., Temple, J. P., et al. (2016). Characterization of a novel bioreactor system for 3D cellular mechanobiology studies. Biotechnology and Bioengineering, 113(8), 1825–1837. https://doi.org/10.1002/bit.25946

    Article  Google Scholar 

  21. Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P. L., Soares, R., & Guerreiro, S. G. (2015). Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Engineering. Part A, 21(5-6), 1055–1065. https://doi.org/10.1089/ten.tea.2014.0443

    Article  Google Scholar 

  22. Critser, P. J., & Yoder, M. C. (2010). Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Current Opinion in Organ Transplantation, 15, 68. https://doi.org/10.1097/MOT.0b013e32833454b5

    Article  Google Scholar 

  23. van der Schaft, D. W. J., van Spreeuwel, A. C. C., van Assen, H. C., & Baaijens, F. P. T. (2011). Mechanoregulation of vascularization in aligned tissue-engineered muscle: A role for vascular endothelial growth factor. Tissue Engineering. Part A, 17(21-22), 2857–2865. https://doi.org/10.1089/ten.tea.2011.0214

    Article  Google Scholar 

  24. Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences, 106(35), 14990–14995. https://doi.org/10.1073/pnas.0812242106

    Article  ADS  Google Scholar 

  25. Eckermann, C. W., Lehle, K., Schmid, S. A., Wheatley, D. N., & Kunz-Schughart, L. A. (2011). Characterization and modulation of fibroblast/endothelial cell co-cultures for the in vitro preformation of three-dimensional tubular networks. Cell Biology International, 35(11), 1097–1110. https://doi.org/10.1042/CBI20100718

    Article  Google Scholar 

  26. Ehler, E., Moore-Morris, T., & Lange, S. (2013). Isolation and culture of neonatal mouse cardiomyocytes. Journal of Visualized Experiments, 79, 1–10. https://doi.org/10.3791/50154

    Article  Google Scholar 

  27. Eng, G., Lee, B. W., Protas, L., Gagliardi, M., Brown, K., Kass, R. S., et al. (2016). Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nature Communications, 7, 10312. https://doi.org/10.1038/ncomms10312

    Article  ADS  Google Scholar 

  28. Engler, A. J., Carag-Krieger, C., Johnson, C. P., Raab, M., Tang, H. Y., Speicher, D. W., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. Journal of Cell Science, 121(22), 3794–3802. https://doi.org/10.1242/jcs.029678

    Article  Google Scholar 

  29. Feng, Z., Matsumoto, T., Nomura, Y., & Nakamura, T. (2005). An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. IEEE Engineering in Medicine and Biology Magazine, 24(4), 73–79. https://doi.org/10.1109/MEMB.2005.1463399

    Article  Google Scholar 

  30. Forrester, J. S., White, A. J., Matsushita, S., Chakravarty, T., & Makkar, R. R. (2009). New paradigms of myocardial regeneration post-infarction. Tissue preservation, cell environment, and pluripotent cell sources. JACC. Cardiovascular Interventions, 2(1), 1–8. https://doi.org/10.1016/j.jcin.2008.10.010

    Article  Google Scholar 

  31. Frangogiannis, N. G. (2015). The inflammatory response in myocardial injury, repair and remodeling. Nature Reviews Cardiology, 11(5), 255–265. https://doi.org/10.1038/nrcardio.2014.28

    Article  Google Scholar 

  32. Frantz, S., Bauersachs, J., & Ertl, G. (2009). Post-infarct remodelling: Contribution of wound healing and inflammation. Cardiovascular Research, 81(3), 474–481. https://doi.org/10.1093/cvr/cvn292

    Article  Google Scholar 

  33. Freeman, I., Kedem, A., & Cohen, S. (2008). The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials, 29(22), 3260–3268. https://doi.org/10.1016/j.biomaterials.2008.04.025

    Article  Google Scholar 

  34. Freiman, A., Shandalov, Y., Rozenfeld, D., Shor, E., Segal, S., Ben-David, D., et al. (2016). Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Research & Therapy, 7(1), 5. https://doi.org/10.1186/s13287-015-0251-6

    Article  Google Scholar 

  35. Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428. https://doi.org/10.1161/01.RES.0000089258.40661.0C

    Article  Google Scholar 

  36. George, P. M., Bliss, T. M., Hua, T., Lee, A., Oh, B., Levinson, A., et al. (2017). Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials, 142, 31–40. https://doi.org/10.1016/j.biomaterials.2017.07.020

    Article  Google Scholar 

  37. Gershlak, J. R., Hernandez, S., Fontana, G., Perreault, L. R., Hansen, K. J., Larson, S. A., et al. (2017). Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 125, 13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011

    Article  Google Scholar 

  38. Greiner, A. M., Biela, S. A., Chen, H., Spatz, J. P., & Kemkemer, R. (2015). Featured article: Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain. Experimental Biology and Medicine, 240(10), 1298–1309. https://doi.org/10.1177/1535370215570191

    Article  Google Scholar 

  39. Gwak, S. J., Bhang, S. H., Kim, I. K., Kim, S. S., Cho, S. W., Jeon, O., et al. (2008). The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials, 29(7), 844–856. https://doi.org/10.1016/j.biomaterials.2007.10.050

    Article  Google Scholar 

  40. Hang, J., Kong, L., Gu, J. W., & Adair, T. (1995). VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. The American Journal of Physiology, 269(5), 1827–1831. https://doi.org/10.1152/ajpheart.1995.269.5.H1827

    Article  Google Scholar 

  41. Hao, X., Silva, E. A., Månsson-Broberg, A., Grinnemo, K. H., Siddiqui, A. J., Dellgren, G., et al. (2007). Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 75(1), 178–185. https://doi.org/10.1016/j.cardiores.2007.03.028

    Article  Google Scholar 

  42. Hasan, A., Khattab, A., Islam, M. A., Hweij, K. A., Zeitouny, J., Waters, R., et al. (2015). Injectable hydrogels for cardiac tissue repair after myocardial infarction. Advancement of Science, 2(11), 1–18. https://doi.org/10.1002/advs.201500122

    Article  Google Scholar 

  43. Hirata, M., & Yamaoka, T. (2017). Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomaterialia, 65, 44–52. https://doi.org/10.1016/j.actbio.2017.10.032

    Article  Google Scholar 

  44. Hirota, A., Fujii, S., & Kamino, K. (1979). Optical monitoring of spontaneous electrical activity of 8-somite embryonic chick heart. The Japanese Journal of Physiology, 29(5), 635–639. https://doi.org/10.2170/jjphysiol.29.635

    Article  Google Scholar 

  45. Hirt, M. N., Hansen, A., & Eschenhagen, T. (2014). Cardiac tissue engineering : State of the art. Circulation Research, 114(2), 354–367. https://doi.org/10.1161/CIRCRESAHA.114.300522

    Article  Google Scholar 

  46. Huang, N. F., Niiyama, H., Peter, C., De, A., Natkunam, Y., Fleissner, F., et al. (2010). Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(5), 984–991. https://doi.org/10.1161/ATVBAHA.110.202796

    Article  Google Scholar 

  47. Hutton, D. L., Logsdon, E. A., Moore, E. M., Mac Gabhann, F., Gimble, J. M., & Grayson, W. L. (2012). Vascular morphogenesis of adipose-derived stem cells is mediated by heterotypic cell-cell interactions. Tissue Engineering. Part A, 18(15-16), 1729–1740. https://doi.org/10.1089/ten.TEA.2011.0599

    Article  Google Scholar 

  48. Hutton, D. L., Moore, E. M., Gimble, J. M., & Grayson, W. L. (2013). Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Engineering. Part A, 19(17-18), 2076–2086. https://doi.org/10.1089/ten.TEA.2012.0752

    Article  Google Scholar 

  49. Ikegame, Y., Yamashita, K., Hayashi, S.-I., Mizuno, H., Tawada, M., You, F., et al. (2011). Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy, 13(6), 675–685. https://doi.org/10.3109/14653249.2010.549122

    Article  Google Scholar 

  50. Iyer, R. K., Chiu, L. L. Y., & Radisic, M. (2009). Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering. Journal of Biomedical Materials Research. Part A, 89(3), 616–631. https://doi.org/10.1002/jbm.a.32014

    Article  Google Scholar 

  51. Iyer, R. K., Chui, J., & Radisic, M. (2009). Spatiotemporal tracking of cells in tissue-engineered cardiac organoids. Journal of Tissue Engineering and Regenerative Medicine, 3(3), 196–207. https://doi.org/10.1002/term.153

    Article  Google Scholar 

  52. Jackman, C. P., Shadrin, I. Y., Carlson, A. L., & Bursac, N. (2015). Human cardiac tissue engineering: From pluripotent stem cells to heart repair. Current Opinion in Chemical Engineering, 7, 57–64. https://doi.org/10.1016/j.coche.2014.11.004

    Article  Google Scholar 

  53. Jacot, J. G., McCulloch, A. D., & Omens, J. H. (2008). Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophysical Journal, 95(7), 3479–3487. https://doi.org/10.1529/biophysj.107.124545

    Article  ADS  Google Scholar 

  54. Kajiya, F., & Goto, M. (1999). Integrative physiology of coronary microcirculation. The Japanese Journal of Physiology, 49(3), 229–241. https://doi.org/10.2170/jjphysiol.49.229

    Article  Google Scholar 

  55. Kira, Y., Nakaoka, T., Hashimoto, E., Okabe, F., Asano, S., & Sekine, I. (1994). Effect of long-term cyclic mechanical load on protein synthesis and morphological changes in cultured myocardial cells from neonatal rat. Cardiovascular Drugs and Therapy, 8, 251–262.

    Article  Google Scholar 

  56. Korhonen, T., Hänninen, S. L., & Tavi, P. (2009). Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophysical Journal, 96(3), 1189–1209. https://doi.org/10.1016/j.bpj.2008.10.026

    Article  ADS  Google Scholar 

  57. Krishnan, L., Underwood, C. J., Maas, S., Ellis, B. J., Kode, T. C., Hoying, J. B., et al. (2008). Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovascular Research, 78(2), 324–332. https://doi.org/10.1093/cvr/cvn055

    Article  Google Scholar 

  58. Kurokawa, Y. K., Yin, R. T., Shang, M. R., Shirure, V. S., Moya, M. L., & George, S. C. (2017). Human induced pluripotent stem cell-derived endothelial cells for three-dimensional microphysiological systems. Tissue Engineering. Part C, Methods, 23(8), 474–484. https://doi.org/10.1089/ten.tec.2017.0133

    Article  Google Scholar 

  59. Kusuma, S., Shen, Y.-I., Hanjaya-Putra, D., Mali, P., Cheng, L., & Gerecht, S. (2013). Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proceedings of the National Academy of Sciences, 110(31), 12601–12606. https://doi.org/10.1073/pnas.1306562110

    Article  ADS  Google Scholar 

  60. Kwon, C., Arnold, J., Hsiao, E. C., Taketo, M. M., Conklin, B. R., & Srivastava, D. (2007). Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10894–10899. https://doi.org/10.1073/pnas.0704044104

    Article  ADS  Google Scholar 

  61. Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J., & Srivastava, D. (2009). A regulatory pathway involving Notch1/β-catenin/Isl1 determines cardiac progenitor cell fate. Nature Cell Biology, 11(8), 951–957. https://doi.org/10.1038/ncb1906.A

    Article  Google Scholar 

  62. Lesman, A., Gepstein, L., & Levenberg, S. (2010). Vascularization shaping the heart. Annals of the New York Academy of Sciences, 1188, 46–51. https://doi.org/10.1111/j.1749-6632.2009.05082.x

    Article  ADS  Google Scholar 

  63. Lesman, A., Gepstein, L., & Levenberg, S. (2014). Cell tri-culture for cardiac vascularization. Methods in Molecular Biology, 1181, 131–137. https://doi.org/10.1007/978-1-4939-1047-2_12

    Article  Google Scholar 

  64. Lesman, A., Habib, M., Caspi, O., Gepstein, A., Arbel, G., Levenberg, S., et al. (2010). Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Engineering. Part A, 16(1), 115–125. https://doi.org/10.1089/ten.TEA.2009.0130

    Article  Google Scholar 

  65. Lesman, A., Koffler, J., Atlas, R., Blinder, Y. J., Kam, Z., & Levenberg, S. (2011). Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials, 32(31), 7856–7869. https://doi.org/10.1016/j.biomaterials.2011.07.003

    Article  Google Scholar 

  66. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4391–4396. https://doi.org/10.1073/pnas.032074999

    Article  ADS  Google Scholar 

  67. Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23(7), 879–884. https://doi.org/10.1038/nbt1109

    Article  Google Scholar 

  68. Lewandowski, J., Kolanowski, T. J., & Kurpisz, M. (2017). Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1658–1674. https://doi.org/10.1002/term.2117

    Article  Google Scholar 

  69. Lian, X., Bao, X., Al-Ahmad, A., Liu, J., Wu, Y., Dong, W., et al. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804–816. https://doi.org/10.1016/j.stemcr.2014.09.005

    Article  Google Scholar 

  70. Liau, B., Christoforou, N., Leong, K. W., & Bursac, N. (2011). Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials, 32(35), 9180–9187. https://doi.org/10.1016/j.biomaterials.2011.08.050

    Article  Google Scholar 

  71. Lin, Y.-L., Chen, C.-P., Lo, C.-M., & Wang, H.-S. (2016). Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton’s jelly mesenchymal stem cells into cardiac progenitor cells. Journal of Biomedial Materials Research Part A, 104(9), 2234–2242. https://doi.org/10.1002/jbm.a.35762

    Article  Google Scholar 

  72. Lu, L., Mende, M., Yang, X., Körber, H. F., Schnittler, H. J., Weinert, S., et al. (2013). Design and validation of a bioreactor for simulating the cardiac niche: A system incorporating cyclic stretch, electrical stimulation and constant perfusion. Tissue Engineering. Part A, 19, 403. https://doi.org/10.1089/ten.TEA.2012.0135

    Article  Google Scholar 

  73. Lu, Y., Yu, T., Liang, H., Wang, J., Xie, J., Shao, J., et al. (2014). Nitric oxide inhibits hetero-adhesion of cancer cells to endothelial cells: Restraining circulating tumor cells from initiating metastatic cascade. Scientific Reports, 4, 1–9. https://doi.org/10.1038/srep04344

    Article  Google Scholar 

  74. Lundy, S. D., Zhu, W., Regnier, M., & Laflamme, M. A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells and Development, 22(14), 1991. https://doi.org/10.1089/scd.2012.0490

    Article  Google Scholar 

  75. Mandel, Y., Manivanh, R., Dalal, R., Huie, P., Wang, J., Brinton, M., et al. (2013). Vasoconstriction by electrical stimulation: New approach to control of non-compressible hemorrhage. Scientific Reports, 3, 1–7. https://doi.org/10.1038/srep02111

    Article  Google Scholar 

  76. Merfeld-Clauss, S., Gollahalli, N., March, K. L., & Traktuev, D. O. (2010). Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Engineering. Part A, 16(9), 2953–2966. https://doi.org/10.1089/ten.tea.2009.0635

    Article  Google Scholar 

  77. Merfeld-Clauss, S., Lupov, I. P., Lu, H., Feng, D., Compton-Craig, P., March, K. L., et al. (2014). Adipose stromal cells differentiate along a smooth muscle lineage pathway upon endothelial cell contact via induction of activin A. Circulation Research, 115(9), 800–809. https://doi.org/10.1161/CIRCRESAHA.115.304026

    Article  Google Scholar 

  78. Miklas, J. W., Nunes, S. S., Sofla, A., Reis, L. A., Pahnke, A., Xiao, Y., et al. (2014). Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication, 6(2), 1–27. https://doi.org/10.1088/1758-5082/6/2/024113

    Article  Google Scholar 

  79. Montgomery, M., Ahadian, S., Davenport Huyer, L., Lo Rito, M., Civitarese, R. A., Vanderlaan, R. D., et al. (2017). Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature Materials, 16(10), 1038. https://doi.org/10.1038/nmat4956

    Article  ADS  Google Scholar 

  80. Montgomery, M., Jiao, Y., Phillips, S., Singh, G., Xu, J., Balsara, R., et al. (1998). Alterations in sheep fetal right ventricular tissue with induced hemodynamic pressure overload. Basic Research in Cardiology, 93(3), 192–200.

    Article  Google Scholar 

  81. Morgan, K. Y., & Black, L. D. (2014). Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Engineering. Part A, 20(11-12), 1654–1667. https://doi.org/10.1089/ten.tea.2013.0355

    Article  Google Scholar 

  82. Morrissette-Mcalmon, J., Blazeski, A., Somers, S., Kostecki, G., Tung, L., & Grayson, W. L. (2018). Adipose-derived perivascular mesenchymal stromal/stem cells promote functional vascular tissue engineering for cardiac regenerative purposes. Journal of Tissue Engineering and Regenerative Medicine, 12, e962. https://doi.org/10.1002/term.2418

    Article  Google Scholar 

  83. Naito, A. T., Shiojima, I., Akazawa, H., Hidaka, K., Morisaki, T., Kikuchi, A., et al. (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences, 103(52), 19812–19817. https://doi.org/10.1073/pnas.0605768103

    Article  ADS  Google Scholar 

  84. Nunes, S. S., Miklas, J. W., Liu, J., Aschar-Sobbi, R., Xiao, Y., Zhang, B., et al. (2013). Biowire: A platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods, 10(8), 781–787. https://doi.org/10.1038/nmeth.2524

    Article  Google Scholar 

  85. Ong, C. S., Fukunishi, T., Zhang, H., Huang, C. Y., Nashed, A., Blazeski, A., et al. (2017). Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Scientific Reports, 7(1), 2–12. https://doi.org/10.1038/s41598-017-05018-4

    Article  Google Scholar 

  86. Ott, H. C., Matthiesen, T. S., Goh, S.-K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221. https://doi.org/10.1038/nm1684

    Article  Google Scholar 

  87. Park, H.-J., Zhang, Y., Georgescu, S. P., Johnson, K. L., Kong, D., & Galper, J. B. (2006). Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Reviews, 2(2), 93–101. https://doi.org/10.1007/s12015-006-0015-x

    Article  Google Scholar 

  88. Pedrotty, D. M., Klinger, R. Y., Kirkton, R. D., & Bursac, N. (2009). Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovascular Research, 83(4), 688–697. https://doi.org/10.1093/cvr/cvp164

    Article  Google Scholar 

  89. Pietronave, S., Zamperone, A., Oltolina, F., Colangelo, D., Follenzi, A., Novelli, E., et al. (2014). Monophasic and biphasic electrical stimulation induces a precardiac differentiation in progenitor cells isolated from human heart. Stem Cells and Development, 23(8), 888–898. https://doi.org/10.1089/scd.2013.0375

    Article  Google Scholar 

  90. Pill, K., Hofmann, S., Redl, H., & Holnthoner, W. (2015). Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: A comparison. Cell Regeneration, 4(1), 1–10. https://doi.org/10.1186/s13619-015-0025-8

    Article  Google Scholar 

  91. Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacology & Therapeutics, 123(2), 255–278. https://doi.org/10.1016/j.pharmthera.2009.05.002

    Article  ADS  Google Scholar 

  92. Radisic, M., Fast, V. G., Sharifov, O. F., Iyer, R. K., Park, H., & Vunjak-Novakovic, G. (2009). Optical mapping of impulse propagation in engineered cardiac tissue. Tissue Engineering. Part A, 15(4), 851–860. https://doi.org/10.1089/ten.tea.2008.0223

    Article  Google Scholar 

  93. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 101(52), 18129–18134. https://doi.org/10.1073/pnas.0407817101

    Article  ADS  Google Scholar 

  94. Rakusan, K., Flanagan, M. F., Geva, T., Southern, J., & Van Praagh, R. (1992). Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation, 86(1), 38–46. https://doi.org/10.1161/01.CIR.86.1.38

    Article  Google Scholar 

  95. Rao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J., & Stegemann, J. P. (2012). Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis, 15(2), 253–264. https://doi.org/10.1007/s10456-012-9257-1

    Article  Google Scholar 

  96. Riemenschneider, S. B., Mattia, D. J., Wendel, J. S., Schaefer, J. A., Ye, L., Guzman, P. A., et al. (2016). Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials, 36(5), 1011–1014. https://doi.org/10.1016/j.biomaterials.2016.04.031

    Article  Google Scholar 

  97. Riemenschneider, S. B., Mattia, D. J., Wendel, J. S., Schaefer, J. A., Ye, L., Guzman, P. A., et al. (2016). Inosculation and perfusion of pre-vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials, 97, 51–61. https://doi.org/10.1016/j.biomaterials.2016.04.031

    Article  Google Scholar 

  98. Robertson, C., Tran, D., & George, S. (2013). Concise review: Maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells, 31(5), 1–17. https://doi.org/10.1002/stem.1331

    Article  Google Scholar 

  99. Ruvinov, E., Leor, J., & Cohen, S. S. (2010). The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 31(16), 4573–4582. https://doi.org/10.1016/j.biomaterials.2010.02.026

    Article  Google Scholar 

  100. Schaaf, S., Eder, A., Vollert, I., Stöhr, A., Hansen, A., & Eschenhagen, T. (2014). Generation of strip-format fibrin-based engineered heart tissue (EHT). Methods in Molecular Biology, 1181, 121–129. https://doi.org/10.1007/978-1-4939-1047-2_11

    Article  Google Scholar 

  101. Schaefer, J. A., Guzman, P. A., Riemenschneider, S. B., Kamp, T. J., & Tranquillo, R. T. (2018). A cardiac patch from aligned microvessel and cardiomyocyte patches. Journal of Tissue Engineering and Regenerative Medicine, 12, 546. https://doi.org/10.1002/term.2568

    Article  Google Scholar 

  102. Schenke-Layland, Y. K., Strem, B. M., Deemedio, M. T., Hedrick, M. H., Roos, K. P., et al. (2010). Adipose tissue-derived cells improve cardiac function following myocardial infarction. The Journal of Surgical Research, 153(2), 217–223. https://doi.org/10.1016/j.jss.2008.03.019

    Article  Google Scholar 

  103. Shadrin, I. Y., Allen, B. W., Qian, Y., Jackman, C. P., Carlson, A. L., Juhas, M. E., et al. (2017). Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nature Communications, 8(1), 1825. https://doi.org/10.1038/s41467-017-01946-x

    Article  ADS  Google Scholar 

  104. Shen, Y. H., Shoichet, M. S., & Radisic, M. (2008). Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomaterialia, 4(3), 477–489. https://doi.org/10.1016/j.actbio.2007.12.011

    Article  Google Scholar 

  105. Shen, Y. I., Cho, H., Papa, A. E., Burke, J. A., Chan, X. Y., Duh, E. J., et al. (2016). Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials, 102, 107–119. https://doi.org/10.1016/j.biomaterials.2016.06.009

    Article  Google Scholar 

  106. Shimko, V. F., & Claycomb, W. C. (2008). Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Engineering. Part A, 14(1), 49–58. https://doi.org/10.1089/ten.a.2007.0092

    Article  Google Scholar 

  107. Sieminski, A. L., Hebbel, R. P., & Gooch, K. J. (2004). The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Experimental Cell Research, 297(2), 574–584. https://doi.org/10.1016/j.yexcr.2004.03.035

    Article  Google Scholar 

  108. Sinha, R., Le Gac, S., Verdonschot, N., Van Den Berg, A., Koopman, B., & Rouwkema, J. (2016). Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Scientific Reports, 6, 29510. https://doi.org/10.1038/srep29510

    Article  ADS  Google Scholar 

  109. Souders, C. A., Bowers, S. L. K., & Baudino, T. A. (2009). Cardiac fibroblast: The renaissance cell. Circulation Research, 105(12), 1164–1176. https://doi.org/10.1161/CIRCRESAHA.109.209809

    Article  Google Scholar 

  110. Steffens, G. C. M., Yao, C., Prével, P., Markowicz, M., Schenck, P., Noah, E. M., et al. (2004). Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Engineering, 10(9-10), 1502–1509. https://doi.org/10.1089/ten.2004.10.1502

    Article  Google Scholar 

  111. Stevens, K. R., Kreutziger, K. L., Dupras, S. K., Korte, F. S., Regnier, M., Muskheli, V., et al. (2009). Physiological function and transplantation of scaffold-free and vascularized human. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16568.

    Article  ADS  Google Scholar 

  112. Sun, X., & Nunes, S. S.. (2017). Maturation of human stem cell-derived cardiomyocytes in biowires using electrical stimulation. Journal of Visualized Experiments, (123), 1–8. doi:https://doi.org/10.3791/55373.

  113. Sun, X., & Nunes, S. S. (2017). Bioengineering approaches to mature human pluripotent stem cell-derived cardiomyocytes. Frontiers in Cell and Development Biology, 5, 19. https://doi.org/10.3389/fcell.2017.00019

    Article  Google Scholar 

  114. Taber, L. A. (1998). Mechanical aspects of cardiac development. Progress in Biophysics and Molecular Biology, 69, 237–255.

    Article  Google Scholar 

  115. Tandon, N., Cannizzaro, C., Chao, P.-H. G., Maidhof, R., Marsano, A., Au, H. T., et al. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173. https://doi.org/10.1038/nprot.2008.183

    Article  Google Scholar 

  116. Thompson, S. A., Copeland, C. R., Reich, D. H., & Tung, L. (2011). Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation, 123(19), 2083–2093. https://doi.org/10.1161/CIRCULATIONAHA.110.015057

    Article  Google Scholar 

  117. Thomson, K. S., Korte, F. S., Giachelli, C. M., Ratner, B. D., Regnier, M., & Scatena, M. (2013). Prevascularized microtemplated fibrin scaffolds for cardiac tissue engineering applications. Tissue Engineering. Part A, 19(7-8), 967–977. https://doi.org/10.1089/ten.tea.2012.0286

    Article  Google Scholar 

  118. Topper, J. N., & Gimbrone Jr., M. A. (1999). Blood flow and vascular gene expression: Fluid shear stress as a modulator of endothelial phenotype. Molecular Medicine Today, 5(1), 40–46. https://doi.org/10.1016/S1357-4310(98)01372-0

    Article  Google Scholar 

  119. Tulloch, N. L., Muskheli, V., Razumova, M. V., Korte, F. S., Regnier, M., Hauch, K. D., et al. (2011). Growth of engineered human myocardium with mechanical loading and vascular Coculture. Circulation Research, 109, 47–59. https://doi.org/10.1161/CIRCRESAHA.110.237206

    Article  Google Scholar 

  120. Twardowski, R. L., & Black, L. D. (2014). Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model. Annals of Biomedical Engineering, 42(5), 1074–1084. https://doi.org/10.1007/s10439-014-0971-2

    Article  Google Scholar 

  121. Underwood, C. J., Edgar, L. T., Hoying, J. B., & Weiss, J. A. (2014). Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. American Journal of Physiology. Heart and Circulatory Physiology, 307(2), H152–H164. https://doi.org/10.1152/ajpheart.00995.2013

    Article  Google Scholar 

  122. Valarmathi, M. T., Fuseler, J. W., Davis, J. M., & Price, R. L. (2017). A novel human tissue-engineered 3-D functional vascularized cardiac muscle construct. Frontiers in Cell and Development Biology, 5, 1–24. https://doi.org/10.3389/fcell.2017.00002

    Article  Google Scholar 

  123. Veerman, C. C., Kosmidis, G., Mummery, C. L., Casini, S., Verkerk, A. O., & Bellin, M. (2015). Immaturity of human stem-cell-derived cardiomyocytes in culture: Fatal flaw or soluble problem? Stem Cells and Development, 24(9), 1035–1052. https://doi.org/10.1089/scd.2014.0533

    Article  Google Scholar 

  124. Verseijden, F., Posthumus-van Sluijs, S. J., Pavljasevic, P., Hofer, S. O. P., van Osch, G. J. V. M., & Farrell, E. (2010). Adult human bone marrow- and adipose tissue-derived stromal cells support the formation of prevascular-like structures from endothelial cells in vitro. Tissue Engineering. Part A, 16(1), 101–114. https://doi.org/10.1089/ten.TEA.2009.0106

    Article  Google Scholar 

  125. Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering Part B: Reviews, 16(2), 169.

    Article  Google Scholar 

  126. Wang, B., Wang, G., To, F., Butler, J. R., Claude, A., McLaughlin, R. M., et al. (2013). Myocardial scaffold-based cardiac tissue engineering: Application of coordinated mechanical and electrical stimulations. Langmuir, 29(35), 11109–11117. https://doi.org/10.1021/la401702w

    Article  Google Scholar 

  127. Weinberger, F., Mannhardt, I., & Eschenhagen, T. (2017). Engineering cardiac muscle tissue: A maturating field of research. Circulation Research, 120(9), 1487–1500. https://doi.org/10.1161/CIRCRESAHA.117.310738

    Article  Google Scholar 

  128. Wendel, J. S., Ye, L., Tao, R., Zhang, J., Zhang, J., Kamp, T. J., et al. (2015). Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cells Translational Medicine, 4(11), 1324–1332. https://doi.org/10.5966/sctm.2015-0044

    Article  Google Scholar 

  129. Wilson, C. J., Kasper, G., Schütz, M. A., & Duda, G. N. (2009). Cyclic strain disrupts endothelial network formation on Matrigel. Microvascular Research, 78(3), 358–363. https://doi.org/10.1016/j.mvr.2009.08.002

    Article  Google Scholar 

  130. Wu, P. K., & Ringeisen, B. R. (2010). Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2(1), 014111. https://doi.org/10.1088/1758-5082/2/1/014111

    Article  ADS  Google Scholar 

  131. Xiong, Q., Hill, K. L., Li, Q., Suntharalingam, P., Mansoor, A., Wang, X., et al. (2011). A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells, 29(2), 367–375. https://doi.org/10.1002/stem.580

    Article  Google Scholar 

  132. Yamazaki, T., Komuro, I., & Yazaki, Y. (1995). Molecular mechanisms of cardiac cellular hypertrophy by mechanical stress. Journal of Molecular and Cellular Cardiology, 27, 133–140.

    Article  Google Scholar 

  133. Yang, X., Pabon, L., & Murry, C. E. (2014). Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 114(3), 511–523. https://doi.org/10.1161/CIRCRESAHA.114.300558

    Article  Google Scholar 

  134. Ye, L., Chang, Y.-H., Xiong, Q., Zhang, P., Zhang, L., Somasundaram, P., et al. (2014). Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cell populations. Cell Stem Cell, 15(6), 750–761. https://doi.org/10.1016/j.stem.2014.11.009

    Article  Google Scholar 

  135. Yoder, M. C. (2015). Differentiation of pluripotent stem cells into endothelial cells. Current Opinion in Hematology, 22(3), 252–257. https://doi.org/10.1097/MOH.0000000000000140

    Article  Google Scholar 

  136. Young, J. L., & Engler, A. J. (2011). Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials, 32(4), 1002–1009. https://doi.org/10.1016/j.biomaterials.2010.10.020

    Article  Google Scholar 

  137. Yuasa, S., Itabashi, Y., Koshimizu, U., Tanaka, T., Sugimura, K., Kinoshita, M., et al. (2005). Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nature Biotechnology, 23(5), 607–611. https://doi.org/10.1038/nbt1093

    Article  Google Scholar 

  138. Zhang, B., Montgomery, M., Chamberlain, M. D., Ogawa, S., Korolj, A., Pahnke, A., et al. (2016). Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 15(6), 669–678. https://doi.org/10.1038/nmat4570

    Article  ADS  Google Scholar 

  139. Zhang, J., Chu, L.-F., Hou, Z., Schwartz, M. P., Hacker, T., Vickerman, V., et al. (2017). Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proceedings of the National Academy of Sciences, 114, E6072. https://doi.org/10.1073/pnas.1702295114

    Article  Google Scholar 

  140. Zhang, S., Liu, X., Barreto-Ortiz, S. F., Yu, Y., Ginn, B. P., DeSantis, N. A., et al. (2014). Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching. Biomaterials, 35(10), 3243–3251. https://doi.org/10.1016/j.biomaterials.2013.12.081

    Article  Google Scholar 

  141. Zhao, M., Bai, H., Wang, E., Forrester, J. V., & McCaig, C. D. (2004). Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. Journal of Cell Science, 117(3), 397–405. https://doi.org/10.1242/jcs.00868

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren L. Grayson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morrissette-McAlmon, J., Hawthorne, R.N., Snyder, S., Grayson, W.L. (2018). Strategies for Tissue Engineering Vascularized Cardiac Patches to Treat Myocardial Infarctions. In: Gerecht, S. (eds) Biophysical Regulation of Vascular Differentiation and Assembly. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-99319-5_6

Download citation

Publish with us

Policies and ethics