Skip to main content

Molecular Control of Capillary Tube Morphogenesis and Maturation Through Endothelial Cell-Pericyte Interactions: Regulation by Small GTPase-Mediated Signaling, Kinase Cascades, Extracellular Matrix Remodeling, and Defined Growth Factors

  • Chapter
  • First Online:
Biophysical Regulation of Vascular Differentiation and Assembly

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 473 Accesses

Abstract

Studies over many years reveal a critical role for extracellular matrices, matrix metalloproteinases, key small GTPases, and defined growth factors in the molecular control of vascular tube morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes which co-assemble to affect vessel formation, remodeling and stabilization events during development and postnatal life. The EC tube formation process results in the creation of networks of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited, to allow dynamic and polarized cell-cell interactions with ECs. EC-pericyte interactions regulate vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks and tunnels in 3D extracellular matrices in a manner dependent on integrins; membrane-type metalloproteinases; small GTPases including Cdc42, Rac isoforms, k-Ras, and Rap1b; and key downstream effectors of these GTPases. In addition, human EC tubulogenesis requires a defined five-growth factor combination including stem cell factor (SCF), interleukin-3 (IL-3), stromal-derived factor-1 alpha (SDF-1α), fibroblast growth factor-2 (FGF-2), and insulin (Factors). These Factors are necessary to integrate signal transduction cascades to form human EC tube networks and attract pericytes [through EC-derived platelet-derived growth factor (PDGF)-BB and heparin-binding epidermal growth factor (HB-EGF)] to control vessel maturation events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R. H., & Alitalo, K. (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews, 8, 464–478.

    Article  Google Scholar 

  2. Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G., & Cheresh, D. A. (2003). Role of Raf in vascular protection from distinct apoptotic stimuli. Science (New York, N.Y.), 301, 94–96.

    Article  ADS  Google Scholar 

  3. Aplin, A. C., Fogel, E., Zorzi, P., & Nicosia, R. F. (2008). The aortic ring model of angiogenesis. Methods in Enzymology, 443, 119–136.

    Article  Google Scholar 

  4. Aplin, A. C., Zhu, W. H., Fogel, E., & Nicosia, R. F. (2009). Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. American Journal of Physiology, 297, C471–C480.

    Article  Google Scholar 

  5. Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97, 512–523.

    Article  Google Scholar 

  6. Astrof, S., Crowley, D., & Hynes, R. O. (2007). Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Developmental Biology, 311, 11–24.

    Article  Google Scholar 

  7. Baker, A. H., Edwards, D. R., & Murphy, G. (2002). Metalloproteinase inhibitors: Biological actions and therapeutic opportunities. Journal of Cell Science, 115, 3719–3727.

    Article  Google Scholar 

  8. Bayless, K. J., & Davis, G. E. (2002). The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. Journal of Cell Science, 115, 1123–1136.

    Google Scholar 

  9. Bayless, K. J., & Davis, G. E. (2003). Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochemical and Biophysical Research Communications, 312, 903–913.

    Article  Google Scholar 

  10. Bayless, K. J., & Davis, G. E. (2004). Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. The Journal of Biological Chemistry, 279, 11686–11695.

    Article  Google Scholar 

  11. Bayless, K. J., Salazar, R., & Davis, G. E. (2000). RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. The American Journal of Pathology, 156, 1673–1683.

    Article  Google Scholar 

  12. Bell, S. E., Mavila, A., Salazar, R., Bayless, K. J., Kanagala, S., Maxwell, S. A., et al. (2001). Differential gene expression during capillary morphogenesis in 3D collagen matrices: Regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. Journal of Cell Science, 114, 2755–2773.

    Google Scholar 

  13. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D., & Keshet, E. (1999). Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of Clinical Investigation, 103, 159–165.

    Article  Google Scholar 

  14. Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.

    Google Scholar 

  15. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. The Journal of Clinical Investigation, 111, 1287–1295.

    Article  Google Scholar 

  16. Bjarnegard, M., Enge, M., Norlin, J., Gustafsdottir, S., Fredriksson, S., Abramsson, A., et al. (2004). Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development, 131, 1847–1857.

    Article  Google Scholar 

  17. Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual Review of Biochemistry, 72, 743–781.

    Article  Google Scholar 

  18. Bowers, S. L., Norden, P. R., & Davis, G. E. (2016). Molecular signaling pathways controlling vascular tube morphogenesis and pericyte-induced tube maturation in 3D extracellular matrices. Advances in Pharmacology, 77, 241–280. https://doi.org/10.1016/bs.apha.2016.04.005

    Article  Google Scholar 

  19. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438, 932–936.

    Article  ADS  Google Scholar 

  20. Chang, S., Young, B. D., Li, S., Qi, X., Richardson, J. A., & Olson, E. N. (2006). Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell, 126, 321–334.

    Article  Google Scholar 

  21. Chun, T. H., Sabeh, F., Ota, I., Murphy, H., McDonagh, K. T., Holmbeck, K., et al. (2004). MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. The Journal of Cell Biology, 167, 757–767.

    Article  Google Scholar 

  22. Crosswhite, P. L., Podsiadlowska, J. J., Curtis, C. D., Gao, S., Xia, L., Srinivasan, R. S., et al. (2016). CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity. The Journal of Clinical Investigation, 126, 2254–2266. https://doi.org/10.1172/JCI84652

    Article  Google Scholar 

  23. Czirok, A., Zamir, E. A., Szabo, A., & Little, C. D. (2008). Multicellular sprouting during vasculogenesis. Current Topics in Developmental Biology, 81, 269–289.

    Article  Google Scholar 

  24. Davis, G. E. (2010). Matricryptic sites control tissue injury responses in the cardiovascular system: Relationships to pattern recognition receptor regulated events. Journal of Molecular and Cellular Cardiology, 48, 454–460. https://doi.org/10.1016/j.yjmcc.2009.09.002

    Article  Google Scholar 

  25. Davis, G. E., & Bayless, K. J. (2003). An integrin and rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation, 10, 27–44.

    Article  Google Scholar 

  26. Davis, G. E., Bayless, K. J., Davis, M. J., & Meininger, G. A. (2000). Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. The American Journal of Pathology, 156, 1489–1498.

    Article  Google Scholar 

  27. Davis, G. E., Bayless, K. J., & Mavila, A. (2002). Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. The Anatomical Record, 268, 252–275.

    Article  Google Scholar 

  28. Davis, G. E., & Camarillo, C. W. (1996). An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Experimental Cell Research, 224, 39–51.

    Article  Google Scholar 

  29. Davis, G. E., Kim, D. J., Meng, C. X., Norden, P. R., Speichinger, K. R., Davis, M. T., et al. (2013). Control of vascular tube morphogenesis and maturation in 3D extracellular matrices by endothelial cells and pericytes. Methods in Molecular Biology, 1066, 17–28. https://doi.org/10.1007/978-1-62703-604-7_2

    Article  Google Scholar 

  30. Davis, G. E., Koh, W., & Stratman, A. N. (2007). Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Research. Part C, Embryo Today, 81, 270–285.

    Article  Google Scholar 

  31. Davis, G. E., Norden, P. R., & Bowers, S. L. (2015). Molecular control of capillary morphogenesis and maturation by recognition and remodeling of the extracellular matrix: Functional roles of endothelial cells and pericytes in health and disease. Connective Tissue Research, 56, 392–402. https://doi.org/10.3109/03008207.2015.1066781

    Article  Google Scholar 

  32. Davis, G. E., Pintar Allen, K. A., Salazar, R., & Maxwell, S. A. (2001). Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. Journal of Cell Science, 114, 917–930.

    Google Scholar 

  33. Davis, G. E., & Saunders, W. B. (2006). Molecular balance of capillary tube formation versus regression in wound repair: Role of matrix metalloproteinases and their inhibitors. The Journal of Investigative Dermatology. Symposium Proceedings, 11, 44–56.

    Article  Google Scholar 

  34. Davis, G. E., & Senger, D. R. (2005). Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circulation Research, 97, 1093–1107.

    Article  Google Scholar 

  35. Davis, G. E., & Senger, D. R. (2008). Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Current Opinion in Hematology, 15, 197–203.

    Article  Google Scholar 

  36. Davis, G. E., Stratman, A. N., Sacharidou, A., & Koh, W. (2011). Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. International Review of Cell and Molecular Biology, 288, 101–165. https://doi.org/10.1016/B978-0-12-386041-5.00003-0

    Article  Google Scholar 

  37. Dejana, E., Tournier-Lasserve, E., & Weinstein, B. M. (2009). The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Developmental Cell, 16, 209–221.

    Article  Google Scholar 

  38. Ebnet, K., Aurrand-Lions, M., Kuhn, A., Kiefer, F., Butz, S., Zander, K., et al. (2003). The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: A possible role for JAMs in endothelial cell polarity. Journal of Cell Science, 116, 3879–3891.

    Article  Google Scholar 

  39. Ebnet, K., Suzuki, A., Ohno, S., & Vestweber, D. (2004). Junctional adhesion molecules (JAMs): More molecules with dual functions? Journal of Cell Science, 117, 19–29.

    Article  Google Scholar 

  40. Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.

    Article  ADS  Google Scholar 

  41. Foo, S. S., Turner, C. J., Adams, S., Compagni, A., Aubyn, D., Kogata, N., et al. (2006). Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell, 124, 161–173.

    Article  Google Scholar 

  42. Francis, S. E., Goh, K. L., Hodivala-Dilke, K., Bader, B. L., Stark, M., Davidson, D., et al. (2002). Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 927–933.

    Article  Google Scholar 

  43. Galabova-Kovacs, G., Matzen, D., Piazzolla, D., Meissl, K., Plyushch, T., Chen, A. P., et al. (2006). Essential role of B-Raf in ERK activation during extraembryonic development. Proceedings of the National Academy of Sciences of the United States of America, 103, 1325–1330.

    Article  ADS  Google Scholar 

  44. Galan Moya, E. M., Le Guelte, A., & Gavard, J. (2009). PAKing up to the endothelium. Cellular Signalling, 21, 1727–1737.

    Article  Google Scholar 

  45. Gao, M., Craig, D., Lequin, O., Campbell, I. D., Vogel, V., & Schulten, K. (2003). Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proceedings of the National Academy of Sciences of the United States of America, 100, 14784–14789.

    Article  ADS  Google Scholar 

  46. Gerety, S. S., & Anderson, D. J. (2002). Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development, 129, 1397–1410.

    Google Scholar 

  47. Gill, S. E., & Parks, W. C. (2008). Metalloproteinases and their inhibitors: Regulators of wound healing. The International Journal of Biochemistry & Cell Biology, 40, 1334–1347.

    Article  Google Scholar 

  48. Greenberg, J. I., Shields, D. J., Barillas, S. G., Acevedo, L. M., Murphy, E., Huang, J., et al. (2008). A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature, 456, 809–813.

    Article  ADS  Google Scholar 

  49. Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions, 33, 891–895.

    Article  Google Scholar 

  50. Hallmann, R., Horn, N., Selg, M., Wendler, O., Pausch, F., & Sorokin, L. M. (2005). Expression and function of laminins in the embryonic and mature vasculature. Physiological Reviews, 85, 979–1000.

    Article  Google Scholar 

  51. Hammes, H. P. (2005). Pericytes and the pathogenesis of diabetic retinopathy. Hormone and Metabolic Research, 37(Suppl 1), 39–43.

    Article  Google Scholar 

  52. Handsley, M. M., & Edwards, D. R. (2005). Metalloproteinases and their inhibitors in tumor angiogenesis. International Journal of Cancer, 115, 849–860.

    Article  Google Scholar 

  53. Herbert, S. P., Huisken, J., Kim, T. N., Feldman, M. E., Houseman, B. T., Wang, R. A., et al. (2009). Arterial-venous segregation by selective cell sprouting: An alternative mode of blood vessel formation. Science (New York, N.Y.), 326, 294–298.

    Article  ADS  Google Scholar 

  54. Hirschi, K. K., Rohovsky, S. A., & D'Amore, P. A. (1998). PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. The Journal of Cell Biology, 141, 805–814.

    Article  Google Scholar 

  55. Holderfield, M. T., & Hughes, C. C. (2008). Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circulation Research, 102, 637–652.

    Article  Google Scholar 

  56. Hughes, C. C. (2008). Endothelial-stromal interactions in angiogenesis. Current Opinion in Hematology, 15, 204–209.

    Article  Google Scholar 

  57. Hynes, R. O. (2007). Cell-matrix adhesion in vascular development. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 32–40.

    Article  ADS  Google Scholar 

  58. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science (New York, N.Y.), 326, 1216–1219.

    Article  ADS  Google Scholar 

  59. Ingram, K. G., Curtis, C. D., Silasi-Mansat, R., Lupu, F., & Griffin, C. T. (2013). The NuRD chromatin-remodeling enzyme CHD4 promotes embryonic vascular integrity by transcriptionally regulating extracellular matrix proteolysis. PLoS Genetics, 9, e1004031. https://doi.org/10.1371/journal.pgen.1004031

    Article  Google Scholar 

  60. Iruela-Arispe, M. L., & Davis, G. E. (2009). Cellular and molecular mechanisms of vascular lumen formation. Developmental Cell, 16, 222–231.

    Article  Google Scholar 

  61. Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science (New York, N.Y.), 307, 58–62.

    Article  ADS  Google Scholar 

  62. Kamei, M., Saunders, W. B., Bayless, K. J., Dye, L., Davis, G. E., & Weinstein, B. M. (2006). Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 442, 453–456.

    Article  ADS  Google Scholar 

  63. Kim, D. J., Martinez-Lemus, L. A., & Davis, G. E. (2013). EB1, p150Glued, and Clasp1 control endothelial tubulogenesis through microtubule assembly, acetylation, and apical polarization. Blood, 121, 3521–3530. https://doi.org/10.1182/blood-2012-11-470179

    Article  Google Scholar 

  64. Kim, D. J., Norden, P. R., Salvador, J., Barry, D. M., Bowers, S. L. K., Cleaver, O., et al. (2017). Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis. PLoS One, 12, e0184461. https://doi.org/10.1371/journal.pone.0184461

    Article  Google Scholar 

  65. Kim, Y. H., Hu, H., Guevara-Gallardo, S., Lam, M. T., Fong, S. Y., & Wang, R. A. (2008). Artery and vein size is balanced by notch and ephrin B2/EphB4 during angiogenesis. Development, 135, 3755–3764.

    Article  Google Scholar 

  66. Koh, W., Mahan, R. D., & Davis, G. E. (2008). Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. Journal of Cell Science, 121, 989–1001.

    Article  Google Scholar 

  67. Koh, W., Sachidanandam, K., Stratman, A. N., Sacharidou, A., Mayo, A. M., Murphy, E. A., et al. (2009). Formation of endothelial lumens requires a coordinated PKC{epsilon}-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. Journal of Cell Science, 122, 1812–1822.

    Article  Google Scholar 

  68. Koh, W., Stratman, A. N., Sacharidou, A., & Davis, G. E. (2008). In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods in Enzymology, 443, 83–101.

    Article  Google Scholar 

  69. Kwak, H. I., Mendoza, E. A., & Bayless, K. J. (2009). ADAM17 co-purifies with TIMP-3 and modulates endothelial invasion responses in three-dimensional collagen matrices. Matrix Biology, 28, 470–479.

    Article  Google Scholar 

  70. Liu, J., Fraser, S. D., Faloon, P. W., Rollins, E. L., Vom Berg, J., Starovic-Subota, O., et al. (2007). A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 104, 13990–13995.

    Article  ADS  Google Scholar 

  71. Liu, Y., & Senger, D. R. (2004). Matrix-specific activation of Src and rho initiates capillary morphogenesis of endothelial cells. FASEB Journal, 18, 457–468.

    Article  Google Scholar 

  72. Lucitti, J. L., Jones, E. A., Huang, C., Chen, J., Fraser, S. E., & Dickinson, M. E. (2007). Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development, 134, 3317–3326.

    Article  Google Scholar 

  73. Macara, I. G. (2004). Par proteins: Partners in polarization. Current Biology, 14, R160–R162.

    Article  Google Scholar 

  74. Mancuso, M. R., Davis, R., Norberg, S. M., O’Brien, S., Sennino, B., Nakahara, T., et al. (2006). Rapid vascular regrowth in tumors after reversal of VEGF inhibition. The Journal of Clinical Investigation, 116, 2610–2621.

    Article  Google Scholar 

  75. Martin-Belmonte, F., Gassama, A., Datta, A., Yu, W., Rescher, U., Gerke, V., et al. (2007). PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell, 128, 383–397.

    Article  Google Scholar 

  76. Miner, J. H., & Yurchenco, P. D. (2004). Laminin functions in tissue morphogenesis. Annual Review of Cell and Developmental Biology, 20, 255–284.

    Article  Google Scholar 

  77. Morla, A., & Ruoslahti, E. (1992). A fibronectin self-assembly site involved in fibronectin matrix assembly: Reconstruction in a synthetic peptide. The Journal of Cell Biology, 118, 421–429.

    Article  Google Scholar 

  78. Nakatsu, M. N., & Hughes, C. C. (2008). An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods in Enzymology, 443, 65–82.

    Article  Google Scholar 

  79. Norden, P. R., Kim, D. J., Barry, D. M., Cleaver, O. B., & Davis, G. E. (2016). Cdc42 and k-Ras control endothelial tubulogenesis through apical membrane and cytoskeletal polarization: Novel stimulatory roles for GTPase effectors, the small GTPases, Rac2 and Rap1b, and inhibitory influence of Arhgap31 and Rasa1. PLoS One, 11, e0147758. https://doi.org/10.1371/journal.pone.0147758

    Article  Google Scholar 

  80. Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): Inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9, 407–415.

    Article  Google Scholar 

  81. Rhodes, J. M., & Simons, M. (2007). The extracellular matrix and blood vessel formation: Not just a scaffold. Journal of Cellular and Molecular Medicine, 11, 176–205.

    Article  Google Scholar 

  82. Rupp, P. A., Czirok, A., & Little, C. D. (2003). Novel approaches for the study of vascular assembly and morphogenesis in avian embryos. Trends in Cardiovascular Medicine, 13, 283–288.

    Article  Google Scholar 

  83. Sacharidou, A., Koh, W., Stratman, A. N., Mayo, A. M., Fisher, K. E., & Davis, G. E. (2010). Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood, 115(25), 5259–5269.

    Article  Google Scholar 

  84. Sacharidou, A., Stratman, A. N., & Davis, G. E. (2012). Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells, Tissues, Organs, 195, 122–143. https://doi.org/10.1159/000331410

    Article  Google Scholar 

  85. San Antonio, J. D., Zoeller, J. J., Habursky, K., Turner, K., Pimtong, W., Burrows, M., et al. (2009). A key role for the integrin alpha2beta1 in experimental and developmental angiogenesis. The American Journal of Pathology, 175, 1338–1347.

    Article  Google Scholar 

  86. Saunders, W. B., Bayless, K. J., & Davis, G. E. (2005). MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. Journal of Cell Science, 118, 2325–2340.

    Article  Google Scholar 

  87. Saunders, W. B., Bohnsack, B. L., Faske, J. B., Anthis, N. J., Bayless, K. J., Hirschi, K. K., et al. (2006). Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. The Journal of Cell Biology, 175, 179–191.

    Article  Google Scholar 

  88. Senger, D. R., Claffey, K. P., Benes, J. E., Perruzzi, C. A., Sergiou, A. P., & Detmar, M. (1997). Angiogenesis promoted by vascular endothelial growth factor: Regulation through alpha1beta1 and alpha2beta1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 94, 13612–13617.

    Article  ADS  Google Scholar 

  89. Senger, D. R., & Davis, G. E. (2011). Angiogenesis. Cold Spring Harbor Perspectives in Biology, 3, a005090. https://doi.org/10.1101/cshperspect.a005090

    Article  Google Scholar 

  90. Seo, D. W., Li, H., Guedez, L., Wingfield, P. T., Diaz, T., Salloum, R., et al. (2003). TIMP-2 mediated inhibition of angiogenesis: An MMP-independent mechanism. Cell, 114, 171–180.

    Article  Google Scholar 

  91. Smith, A. O., Bowers, S. L., Stratman, A. N., & Davis, G. E. (2013). Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions. PLoS One, 8, e85147. https://doi.org/10.1371/journal.pone.0085147

    Article  ADS  Google Scholar 

  92. Stratman, A. N., & Davis, G. E. (2012). Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: Influence on vascular tube remodeling, maturation, and stabilization. Microscopy and Microanalysis, 18, 68–80. https://doi.org/10.1017/S1431927611012402

    Article  ADS  Google Scholar 

  93. Stratman, A. N., Davis, M. J., & Davis, G. E. (2011). VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood, 117, 3709–3719. https://doi.org/10.1182/blood-2010-11-316752

    Article  Google Scholar 

  94. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J., & Davis, G. E. (2009). Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood, 114, 5091–5101.

    Article  Google Scholar 

  95. Stratman, A. N., Saunders, W. B., Sacharidou, A., Koh, W., Fisher, K. E., Zawieja, D. C., et al. (2009). Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood, 114, 237–247.

    Article  Google Scholar 

  96. Stratman, A. N., Schwindt, A. E., Malotte, K. M., & Davis, G. E. (2010). Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood, 116, 4720–4730. https://doi.org/10.1182/blood-2010-05-286872

    Article  Google Scholar 

  97. Stupack, D. G., & Cheresh, D. A. (2004). Integrins and angiogenesis. Current Topics in Developmental Biology, 64, 207–238.

    Article  Google Scholar 

  98. Tian, Y., Lei, L., Cammarano, M., Nekrasova, T., & Minden, A. (2009). Essential role for the Pak4 protein kinase in extraembryonic tissue development and vessel formation. Mechanisms of Development, 126, 710–720.

    Article  Google Scholar 

  99. Vogel, V. (2006). Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annual Review of Biophysics and Biomolecular Structure, 35, 459–488.

    Article  Google Scholar 

  100. Whelan, M. C., & Senger, D. R. (2003). Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. The Journal of Biological Chemistry, 278, 327–334.

    Article  Google Scholar 

  101. Wurtz, S. O., Schrohl, A. S., Sorensen, N. M., Lademann, U., Christensen, I. J., Mouridsen, H., et al. (2005). Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocrine-Related Cancer, 12, 215–227.

    Article  Google Scholar 

  102. Xu, K., Sacharidou, A., Fu, S., Chong, D. C., Skaug, B., Chen, Z. J., et al. (2011). Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Developmental Cell, 20, 526–539. https://doi.org/10.1016/j.devcel.2011.02.010

    Article  Google Scholar 

  103. Yaniv, K., Isogai, S., Castranova, D., Dye, L., Hitomi, J., & Weinstein, B. M. (2006). Live imaging of lymphatic development in the zebrafish. Nature Medicine, 12, 711–716.

    Article  Google Scholar 

  104. Yu, J. A., Castranova, D., Pham, V. N., & Weinstein, B. M. (2015). Single-cell analysis of endothelial morphogenesis in vivo. Development, 142, 2951–2961. https://doi.org/10.1242/dev.123174

    Article  Google Scholar 

  105. Yuan, L., Sacharidou, A., Stratman, A. N., Le Bras, A., Zwiers, P. J., Spokes, K., et al. (2011). RhoJ is an endothelial cell-restricted rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood, 118, 1145–1153. https://doi.org/10.1182/blood-2010-10-315275

    Article  Google Scholar 

  106. Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A. M., & Burridge, K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. The Journal of Cell Biology, 141, 539–551.

    Article  Google Scholar 

  107. Zhou, X., Rowe, R. G., Hiraoka, N., George, J. P., Wirtz, D., Mosher, D. F., et al. (2008). Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 22, 1231–1243.

    Article  Google Scholar 

  108. Zhou, Z., Apte, S. S., Soininen, R., Cao, R., Baaklini, G. Y., Rauser, R. W., et al. (2000). Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proceedings of the National Academy of Sciences of the United States of America, 97, 4052–4057.

    Article  ADS  Google Scholar 

  109. Zhu, W. H., Guo, X., Villaschi, S., & Francesco Nicosia, R. (2000). Regulation of vascular growth and regression by matrix metalloproteinases in the rat aorta model of angiogenesis. Laboratory Investigation, 80, 545–555.

    Article  Google Scholar 

  110. Zovein, A. C., Luque, A., Turlo, K. A., Hofmann, J. J., Yee, K. M., Becker, M. S., et al. (2010). B1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Developmental Cell, 18, 39–51.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL126518, HL128584, and HL136139 to G.E. Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, G.E. (2018). Molecular Control of Capillary Tube Morphogenesis and Maturation Through Endothelial Cell-Pericyte Interactions: Regulation by Small GTPase-Mediated Signaling, Kinase Cascades, Extracellular Matrix Remodeling, and Defined Growth Factors. In: Gerecht, S. (eds) Biophysical Regulation of Vascular Differentiation and Assembly. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-99319-5_1

Download citation

Publish with us

Policies and ethics