Skip to main content

Processing of Shape Memory Alloys

  • Chapter
  • First Online:
Book cover Fabrication and Processing of Shape Memory Alloys

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

Abstract

Processing of shape memory alloys is attempted abundantly considering its numerous applications in different sectors of industries. However, it is not easy to process shape memory alloys as it has unique properties of pseudoelasticity, tendency to form intermetallic compounds , different phase transformation temperatures and deformation behavior. Different processing techniques reported for shape memory alloys such as powder metallurgy , additive processing, mechanical processing , and thermo-mechanical processing are considered in this chapter that addresses process condition, process parameters, and properties after processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: a review. Prog. Mater. Sci. 57(5), 911–946 (2012)

    Article  CAS  Google Scholar 

  2. M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton, Fabrication of NiTi through additive manufacturing: a review. Prog. Mater. Sci. 83, 630–663 (2016)

    Article  CAS  Google Scholar 

  3. A.P. Markopoulos, I.S. Pressas, D.E. Manolakos, Manufacturing processes of shape memory alloys, in Materials Forming and Machining: Research and Development (2015), p. 155

    Google Scholar 

  4. S.M. Tang, C.Y. Chung, W.G. Liu, Preparation of CuAlNi-based shape memory alloys by mechanical alloying and powder metallurgy method. J. Mater. Process. Technol. 63(1–3), 307–312 (1997)

    Article  Google Scholar 

  5. Z. Li, Z.Y. Pan, N. Tang, Y.B. Jiang, N. Liu, M. Fang, F. Zheng, Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy. Mater. Sci. Eng., A 417(1), 225–229 (2006)

    Article  CAS  Google Scholar 

  6. R.D. Jean, T.Y. Wu, S.S. Leu, The effect of powder metallurgy on Cu-Al-Ni shape memory alloys. Scr. Metall. Mater. 25(4), 883–888 (1991)

    Article  CAS  Google Scholar 

  7. L.G. Bujoreanu, S. Stanciu, B. Özkal, R.I. Comăneci, M. Meyer, Comparative study of the structures of Fe-Mn-Si-Cr-Ni shape memory alloys obtained by classical and by powder metallurgy, respectively, in European Symposium on Martensitic Transformations (EDP Sciences, 2009), p. 05003

    Google Scholar 

  8. B. Bertheville, J.E. Bidaux, Alternative powder metallurgical processing of Ti-rich NiTi shape-memory alloys. Scripta Mater. 52(6), 507–512 (2005)

    Article  CAS  Google Scholar 

  9. M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Stöver, Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater. Sci. Eng., A 337(1), 254–263 (2002)

    Article  Google Scholar 

  10. M. Köhl, T. Habijan, M. Bram, H.P. Buchkremer, D. Stöver, M. Köller, Powder metallurgical near-net-shape fabrication of porous NiTi shape memory alloys for use as long-term implants by the combination of the metal injection molding process with the space-holder technique. Adv. Eng. Mater. 11(12), 959–968 (2009)

    Google Scholar 

  11. B. Yuan, C.Y. Chung, M. Zhu, Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing. Mater. Sci. Eng., A 382(1), 181–187 (2004)

    Article  CAS  Google Scholar 

  12. N. Zhang, P.B. Khosrovabadi, J.H. Lindenhovius, B.H. Kolster, TiNi shape memory alloys prepared by normal sintering. Mater. Sci. Eng., A 150(2), 263–270 (1992)

    Article  Google Scholar 

  13. S.M. Green, D.M. Grant, N.R. Kelly, Powder metallurgical processing of Ni–Ti shape memory alloy. Powder Metall. 40(1), 43–47 (1997)

    Article  CAS  Google Scholar 

  14. S. Wu, C.Y. Chung, X. Liu, P.K. Chu, J.P.Y. Ho, C.L. Chu, Y.L. Chan, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing. Acta Mater. 55(10), 3437–3451 (2007)

    Article  CAS  Google Scholar 

  15. M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing. Mater. Sci. Eng., A 280(2), 334–348 (2000)

    Article  Google Scholar 

  16. B. Yuan, C.Y. Chung, X.P. Zhang, M.Q. Zeng, M. Zhu, Control of porosity and superelasticity of porous NiTi shape memory alloys prepared by hot isostatic pressing. Smart Mater. Struct. 14(5), S201 (2005)

    Article  CAS  Google Scholar 

  17. E. Schüller, O.A. Hamed, M. Bram, D. Sebold, H.P. Buchkremer, D. Stöver, Hot isostatic pressing (HIP) of elemental powder mixtures and prealloyed powder for NiTi shape memory parts. Adv. Eng. Mater. 5(12), 918–924 (2003)

    Article  CAS  Google Scholar 

  18. S.L. Wu, X.M. Liu, P.K. Chu, C.Y. Chung, C.L. Chu, K.W.K. Yeung, Phase transformation behavior of porous NiTi alloys fabricated by capsule-free hot isostatic pressing. J. Alloy. Compd. 449(1), 139–143 (2008)

    Article  CAS  Google Scholar 

  19. L. Krone, E. Schüller, M. Bram, O. Hamed, H.P. Buchkremer, D. Stöver, Mechanical behaviour of NiTi parts prepared by powder metallurgical methods. Mater. Sci. Eng., A 378(1), 185–190 (2004)

    Article  CAS  Google Scholar 

  20. L. Krone, J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, M. Wagner, G. Eggeler, D. Christ, S. Reese, D. Bogdanski, M. Köller, The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel-titanium: a case study with a staple showing shape memory behaviour. Adv. Eng. Mater. 7(7), 613–619 (2005)

    Article  CAS  Google Scholar 

  21. B.Y. Li, L.J. Rong, V.E. Gjunter, Y.Y. Li, Porous Ni-Ti shape memory alloys produced by two different methods. Z. Metall. 91(4), 291–295 (2000)

    CAS  Google Scholar 

  22. A. Biswas, Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure. Acta Mater. 53(5), 1415–1425 (2005)

    Article  CAS  Google Scholar 

  23. D.C. Dunand, P. Müllner, Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 23(2), 216–232 (2011)

    Article  CAS  Google Scholar 

  24. R.S. Kishore, R.K. Nandhakumaar, V. Gokuul, A. Siddharthan, Characterization of mechano-chemically synthesized Cu-Al-Mn shape memory alloy powders and spark plasma sintered compacts

    Google Scholar 

  25. R.A. Portier, P. Ochin, A. Pasko, G.E. Monastyrsky, A.V. Gilchuk, V.I. Kolomytsev, Y.N. Koval, Spark plasma sintering of Cu–Al–Ni shape memory alloy. J. Alloy. Compd. 577, S472–S477 (2013)

    Article  CAS  Google Scholar 

  26. C. Shearwood, Y.Q. Fu, L. Yu, K.A. Khor, Spark plasma sintering of TiNi nano-powder. Scripta Mater. 52(6), 455–460 (2005)

    Article  CAS  Google Scholar 

  27. K. Ito, W. Ito, R.Y. Umetsu, S. Tajima, H. Kawaura, R. Kainuma, K. Ishida, Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering. Scripta Mater. 61(5), 504–507 (2009)

    Article  CAS  Google Scholar 

  28. H. Meier, C. Haberland, J. Frenzel, Structural and functional properties of NiTi shape memory alloys produced by selective laser melting, in Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping (2011), pp. 291–296

    Google Scholar 

  29. B.V. Krishna, S. Bose, A. Bandyopadhyay, Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping. J. Biomed. Mater. Res. B Appl. Biomater. 89(2), 481–490 (2009)

    Article  CAS  Google Scholar 

  30. C. Haberland, H. Meier, J. Frenzel, On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting, in ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers, 2012), pp. 97–104

    Google Scholar 

  31. I.V. Shishkovsky, L.T. Volova, M.V. Kuznetsov, Y.G. Morozov, I.P. Parkin, Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi. J. Mater. Chem. 18(12), 1309–1317 (2008)

    Article  CAS  Google Scholar 

  32. T. Niendorf, F. Brenne, P. Krooß, M. Vollmer, J. Günther, D. Schwarze, H. Biermann, Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by Selective laser melting. Metall. Mater. Trans. A 47(6), 2569–2573 (2016)

    Article  CAS  Google Scholar 

  33. T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C.S. Kiminami, C. Bolfarini, J. Eckert, S. Pauly, Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit. Manuf. 11, 23–31 (2016)

    Article  CAS  Google Scholar 

  34. E.M. Mazzer, C.S. Kiminami, P. Gargarella, R.D. Cava, L.A. Basilio, C. Bolfarini, W.J. Botta, J. Eckert, T. Gustmann, S. Pauly, Atomization and selective laser melting of a Cu-Al-Ni-Mn shape memory alloy, in Materials Science Forum, vol. 802 (2014)

    Google Scholar 

  35. P. Gargarella, C.S. Kiminami, E.M. Mazzer, R.D. Cava, L.A. Basilio, C. Bolfarini, W.J. Botta, J. Eckert, T. Gustmann, S. Pauly, Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting. Mater. Res. 18, 35–38 (2015)

    Article  CAS  Google Scholar 

  36. I.V. Shishkovsky, M.V. Kuznetsov, Y.G. Morozov, Porous titanium and nitinol implants synthesized by SHS/SLS: microstructural and histomorphological analyses of tissue reactions. Int. J. Self Propag. High Temp. Synth. 19(2), 157–167 (2010)

    Article  CAS  Google Scholar 

  37. A. Bandyopadhyay, B. Krishna, W. Xue, S. Bose, Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci. - Mater. Med. 20(1), 29 (2009)

    Article  CAS  Google Scholar 

  38. J. Otubo, O.D. Rigo, C.M. Neto, P.R. Mei, The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys. Mater. Sci. Eng., A 438, 679–682 (2006)

    Article  CAS  Google Scholar 

  39. J. Otubo, O.D. Rigo, C.M. Neto, M.J. Kaufman, P.R. Mei, Scale up of NiTi shape memory alloy production by EBM. In Journal de Physique IV (Proceedings), vol. 112 (EDP sciences, 2003), pp. 873–876

    Google Scholar 

  40. J. Otubo, O.D. Rigo, C.D. Moura Neto, M.J. Kaufman, P.R. Mei, Low carbon content NiTi shape memory alloy produced by electron beam melting. Mater. Res. 7(2), 263–267 (2004)

    Article  CAS  Google Scholar 

  41. K. Mehta, Advanced joining and welding techniques: an overview, in Advanced Manufacturing Technologies (Springer International Publishing, 2017), pp. 101–136

    Google Scholar 

  42. K.P. Mehta, V.J. Badheka, A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater. Manuf. Processes 31(3), 233–254 (2016)

    Article  CAS  Google Scholar 

  43. Z.Y. Ma, Friction stir processing technology: a review. Metall. Mater. Trans. A 39(3), 642–658 (2008)

    Article  CAS  Google Scholar 

  44. A. Barcellona, L. Fratini, D. Palmeri, C. Maletta, M. Brandizzi, Friction stir processing of Niti shape memory alloy: microstructural characterization. Int. J. Mater. Form. 3, 1047–1050 (2010)

    Article  Google Scholar 

  45. B. London, J. Fino, A.R. Pelton, M. Mahoney, T.J. Lienert, T.M.S. Warrendale, Friction stir processing of Nitinol. Friction Stir Weld. Process. III (2005)

    Google Scholar 

  46. D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloy. Compd. 586, 368–374 (2014)

    Article  CAS  Google Scholar 

  47. M. Dixit, J.W. Newkirk, R.S. Mishra, Properties of friction stir-processed Al 1100–NiTi composite. Scripta Mater. 56(6), 541–544 (2007)

    Article  CAS  Google Scholar 

  48. D.Y. Cong, Y.D. Wang, X. Zhao, L. Zuo, R.L. Peng, P. Zetterström, P.K. Liaw, Crystal structures and textures in the hot-forged Ni-Mn-Ga shape memory alloys. Metall. Mater. Trans. A 37(5), 1397–1403 (2006)

    Article  Google Scholar 

  49. J.T. Yeom, J.H. Kim, J.K. Hong, S.W. Kim, C.H. Park, T.H. Nam, K.Y. Lee, Hot forging design of as-cast NiTi shape memory alloy. Mater. Res. Bull. 58, 234–238 (2014)

    Article  CAS  Google Scholar 

  50. F.B. Fernandes, K.K. Mahesh, A. dos Santos Paula, Thermomechanical treatments for Ni-Ti alloys, in Shape Memory Alloys-Processing, Characterization and Applications (InTech, 2013)

    Google Scholar 

  51. S.Y. Jiang, Y.Q. Zhang, Y.N. Zhao, Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation. Trans. Nonferrous Met. Soc. China 23(1), 140–147 (2013)

    Article  CAS  Google Scholar 

  52. I. Karaman, A.V. Kulkarni, Z.P. Luo, Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Phil. Mag. 85(16), 1729–1745 (2005)

    Article  CAS  Google Scholar 

  53. M.H. Wu, Fabrication of nitinol materials and components, in Materials Science Forum, vol. 394 (Trans Tech Publications, 2002), pp. 285–292

    Google Scholar 

  54. V. Demers, V. Brailovski, S.D. Prokoshkin, K.E. Inaekyan, Optimization of the cold rolling processing for continuous manufacturing of nanostructured Ti–Ni shape memory alloys. J. Mater. Process. Technol. 209(6), 3096–3105 (2009)

    Article  CAS  Google Scholar 

  55. Y. Facchinello, V. Brailovski, S.D. Prokoshkin, T. Georges, S.M. Dubinskiy, Manufacturing of nanostructured Ti–Ni shape memory alloys by means of cold/warm rolling and annealing thermal treatment. J. Mater. Process. Technol. 212(11), 2294–2304 (2012)

    Article  CAS  Google Scholar 

  56. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, H.J. Maier, Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater. Sci. Eng., A 486(1), 389–403 (2008)

    Article  CAS  Google Scholar 

  57. J. Otubo, P.R. Mei, S. Koshimizu, Production and characterization of stainless steel based Fe-Cr-Ni-Mn-Si (-Co) shape memory alloys. J. Phys. IV 5(C8), C8–427 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kush Mehta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, K., Gupta, K. (2019). Processing of Shape Memory Alloys. In: Fabrication and Processing of Shape Memory Alloys. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-99307-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99307-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99306-5

  • Online ISBN: 978-3-319-99307-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics