Skip to main content

Sequence-Based Classification and Identification of Prokaryotes

  • Chapter
  • First Online:

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

Bioinformatics is important to classification and identification since all prokaryotes have been classified based on the phylogeny of the 16S rRNA gene sequence and this character has also to a great extent been the gold standard for identification as well. Whole genomic sequences are increasingly used for classification and identification. This includes in silico estimates of DNA-DNA hybridization which has been used for the classification of all species. Classifications of species, genera, families, orders, classes, and phyla are achieved by 16S rRNA sequence-based phylogenetic analysis and more recently phylogenetic analysis of other conserved genes and proteins mainly determined by whole genomic sequencing. The rules for the naming of prokaryotes have been formulated in the International Code of Nomenclature of Prokaryotes. Sequence-based identification can be complemented by other genes besides the 16S rRNA gene sequences. The rpoB gene sequence is frequently used since it allows the separation of some species that cannot be identified by 16S rRNA gene sequence comparison. Identification of prokaryotes that cannot be cultured is possible by 16S rRNA gene amplicon sequencing as further described in Chap. 8.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adékambi, T., Drancourt, M. & Raoult, D. 2009. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Auch, A. F., Von Jan, M., Klenk, H-P., Göker, M. et al. 2010a. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Auch, A. F., Klenk, H-P., Göker, M. 2010b. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences 2: 142–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. 1994. Proc. Natl. Acad. Sci. USA91, 1609–1613.

    Google Scholar 

  • Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., Kjelleberg, S. 2007. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73, 278–288.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., Da Costa, M., Rooney, A. P., Yi, H., Xu, X.-W., De Meyer, S. & Trujillo, M. E. 2018. Minimal standards for the use of genome data for the taxonomy of prokaryotes. IJSEM 68, 461–466.

    PubMed  Google Scholar 

  • DeLong, E. F. 1992. Proc. Natl. Acad. Sci. USA 89, 56855689.

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst, F. E., Paster, B. J., Olsen, I., & Fraser, G. J. 1992. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences. J Bacteriol. 174, 2002–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M., Böttger, E. C. 1989. Isolation and direct complete nucleotiwde determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843–53.

    Google Scholar 

  • Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 57, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Harris, D. L., Glock, R. D., Christensen C. R., Kinyon, J. M. 1972. Inoculation of pigs with Treponema hyodysenteriae (new species) and reproduction of the disease. Vet Med Small Anim Clin.67, 61–64.

    CAS  PubMed  Google Scholar 

  • Hovind-Hougen, K., Birch-Andersen, A., Henrik-Nielsen, R., Orhold, M., Pedersen, J. O., Teglbjaerg, P. S. & Thaysen, E. H. 1982. Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov. J. Clin. Microbiol. 16, 1127–1136.

    Google Scholar 

  • Kim, M., Park, S. C., Baek, I., Chun, J. 2015. Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. Syst Appl Microbiol. 38:79–83.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis, K. T. & Tiedjem J. M. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korczak, B., Christensen, H., Emler, S., Frey, J. & Kuhnert, P. 2004. Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol. 54, 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert, P., Frey, J., Lang, N. P. & Mayfield, L. 2002. Phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis clinical strains reveals a clear species clustering. Int J Syst Evol Microbiol. 52, 1391–5.

    CAS  PubMed  Google Scholar 

  • Kuhnert, P. & Korczak, B. M. 2006. Prediction of whole genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152, 2537–2548.

    Article  CAS  PubMed  Google Scholar 

  • Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., Pace, N. R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 82:6955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepp, P. W., Brinig, M. M., Ouverney, C. C., Palm, K., Armitage, G. C. & Relman, D. A. 2004. Methanogenic Archaea and human periodontal disease. PNAS 101, 6176–6181.

    Article  CAS  PubMed  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., Gordon, J. I. 2008. Evolution of mammals and their gut microbes. Science 320, 1647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochiai, S., Adachi, Y. & Mori, K. 1997. Unification of the genera Serpulina and Brachyspira, and proposal of Brachyspira hyodysenteriae Comb. Nov., Brachyspira innocens Comb. Nov. and Brachyspira pilosicoli Comb. Nov. Microbiol. Immunol. 41, 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Oren, A., da Costa, M.S., Garrity, G.M., Rainey, F.A., Rosselló-Móra, R., Schink, B., Sutcliffe, I., Trujillo, M. E., Whitman, W. B. 2015. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol. 65, 4284–7. doi: https://doi.org/10.1099/ijsem.0.000664.

    Article  CAS  PubMed  Google Scholar 

  • Oren, A., Parte, A., Garrity, G. M. 2016. Implementation of Rule 8 of the International Code of Nomenclature of Prokaryotes for the renaming of classes. Request for an Opinion. Int J Syst Evol Microbiol. 66, 4296–8.

    Article  PubMed  Google Scholar 

  • Parker, C. T., Tindall, B. J. & Garrity, G. M. 2015. International Code of Nomenclature of Prokaryotes. Int. J. Syst. Evol. Microbiol. In press.

    Google Scholar 

  • Parte, A. C. 2014. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014:D613-6. doi: https://doi.org/10.1093/nar/gkt1111. Int J Syst Evol Microbiol. 2016 Oct;66(10):4296–4298. doi: https://doi.org/10.1099/ijsem.0.001319. Epub 2016 Jul 21.

  • Qin, Q. L., Xie, B. B., Zhang, X. Y., Chen, X. L., Zhou, B. C., Zhou, J., Oren, A., Zhang, Y. Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter, M. & Rosello-Mora, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106, 19126–31

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Móra, R., & Amann, R. 2015. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol. 38:209–16.

    Article  PubMed  Google Scholar 

  • Rosenbach, F. J. 1884. Microorganismen bei den Wund-Infections-Krankheiten des Menschen. J.F. Bergmann, Wiesbaden, pp. 1–122.

    Google Scholar 

  • Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors) 1980. Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. 30, 225–420.

    Google Scholar 

  • Simmon, K. E., Croft, A. C. & Petti, C. A. 2006. Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. J. Clin. Microbiol. 44, 4400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton, T. B., Jensen, N. S., Casey, T. A., Tordoff, L. A., Dewhirst, F. E. & Paster, B. J. 1991. Reclassification of Treponema hyodysenteriae and Treponema innocens in a new genus, Serpula gen. nov., as Serpula hyodysenteriae comb. nov. and Serpula innocens comb. nov. Int. J. Syst. Bacteriol. 41, 50–58.

    Article  CAS  PubMed  Google Scholar 

  • Stanton, T. B. 1992. Proposal to change the genus designation Serpula to Serpulina gen. nov. containing the species Serpulina hyodysenteriae comb. nov. and Serpulina innocens comb. nov. Int. J. Syst. Bacteriol., 42, 189–190.

    Article  CAS  PubMed  Google Scholar 

  • Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W., Kämpfer, P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60, 249–266.

    Article  CAS  PubMed  Google Scholar 

  • Ward, D. M., Weller, R. & Baterson, M. M. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65.

    Article  CAS  PubMed  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bact. 173, 697–703.

    Article  CAS  PubMed  Google Scholar 

  • Yarza, P., Richter, M., Peplies, J., Euzeby, J., Amann, R., Schleifer, K. H., Ludwig, W., Glöckner, F. O., Rosselló-Móra, R. 2008. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 31, 241–50.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. & Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeigler, D. R. 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53, 1893–1900.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christensen, H., Olsen, J.E. (2018). Sequence-Based Classification and Identification of Prokaryotes. In: Christensen, H. (eds) Introduction to Bioinformatics in Microbiology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99280-8_7

Download citation

Publish with us

Policies and ethics