Skip to main content

The Influence of the Vibration Suppression on the Rotor Crack Detection Performance

  • Conference paper
  • First Online:
Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM (IFToMM 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 63))

Included in the following conference series:

  • 1472 Accesses

Abstract

The feasibility of controlling the vibrations of rotating machines while performing online crack detection is addressed in this paper. For this purpose, two controllers are compared, namely \( LQR \) and \( H_{\infty } \), which represent optimal and robust control strategies, respectively. A non-dimensional Jeffcott rotor model is employed to simulate the dynamic behavior of a rotating machine. In addition, a crack is introduced in the shaft using the so-called Mayes’ model. An active magnetic bearing (AMB) is placed as an actuator at the disc location along the rotor. For each control technique, different strategies are implemented to evaluate their effectiveness on both attenuating the vibration level and detecting the fatigue crack. Conclusions are drawn regarding the effectiveness of the control strategy for each phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasarda MEF (2000) An overview of active magnetic bearing technology and applications. Shock Vib Dig 32(2):91–99

    Article  Google Scholar 

  2. Schweitzer G (2009) Applications and research topics for active magnetic bearings. In: IUTAM-symposiumon emerging trends in rotor dynamics, Delhi

    Google Scholar 

  3. Kulesza Z, Sawicki JT (2012) Controlled deflection approach for rotor crack detection. J Eng Gas Turbines Power 134(9):92–102

    Article  Google Scholar 

  4. Pesch AH, Hanawalt SP, Sawicki JT (2014) A case study in control methods for active magnetic bearings. In: Dynamic systems and control conference, San Antonio

    Google Scholar 

  5. Imam I, Azzaro SH, Bankert RJ, Scheibel J (1989) Development of an on-line rotor crack detection and monitoring system. J Vib Acoust Stress Reliab Des 111:241–250

    Article  Google Scholar 

  6. Sawicki JT, Friswell MI, Kulesza Z, Wroblewski A, Lekki JD (2011) Detecting cracked rotors using auxiliary harmonic excitation. J Sound Vib 330:1365–1381

    Article  Google Scholar 

  7. Litak G, Sawicki JT (2009) Crack identification by multifractal analysis of a dynamic rotor response. ZAMM Z Angew Math Mech 89(7):587–592

    Article  Google Scholar 

  8. Litak G, Sawicki JT, Kasperek R (2009) Cracked rotor detection by recurrence plots. Nondestruct Test Eval 24(4):347–351

    Article  Google Scholar 

  9. Sawicki JT, Sen AK, Litak G (2009) Multiresolution wavelet analysis of the dynamics of a cracked rotor. Int J Rotat Mach

    Google Scholar 

  10. Kulesza Z, Sawicki JT (2010) Auxiliary state variables for rotor crack detection. J Vib Control 17(6):857–872

    Article  MathSciNet  Google Scholar 

  11. Kulesza Z, Sawicki JT, Gyekenyesi AL (2012) Robust fault detection filter using linear matrix inequalities’ approach for shaft crack diagnosis. J Vib Control 19(9):1421–1440

    Article  MathSciNet  Google Scholar 

  12. Zhu C, Robb DA, Ewins DJ (2003) The dynamics of a cracked rotor with an active magnetic bearing. J Sound Vib 265:469–487

    Article  Google Scholar 

  13. Gasch R (1976) Dynamic behaviour of a simple rotor with a cross-sectional crack. In: IMechE conference on vibrations in rotating machinery, Cambridge C178(76), pp123–128

    Google Scholar 

  14. Gasch R (1993) A survey of the dynamic behavior of a simple rotating shaft with a transverse crack. J Sound Vib 160:313–332

    Article  Google Scholar 

  15. Mayes IW, Davis WGR (1976) The vibrational behaviour of a rotating shaft system containing a transverse crack. In: IMechE conference on vibrations in rotating machinery, Cambridge, C168(76), pp 53–64

    Google Scholar 

  16. Mayes IW, Davies WGR (1984) Analysis of the response of a multirotor-bearing system containing a transverse crack. J Vib Acoust Stress Reliab Des 106:139–145

    Article  Google Scholar 

  17. Friswell MI, Penny JET, Garvey SD, Lees AW (2010) Dynamics of rotating machines. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Burbano CR, Steffen Jr. V (2007) Diagnosis of cracked shafts by monitoring the transient motion response. In: International symposium on dynamic problems, SP, pp 1–10

    Google Scholar 

  19. Singhal S (2014) Motors not turbines drive heavy equipment. In: Machine design

    Google Scholar 

  20. Pandey SK, Laxmi V (2015) Optimal control of twin rotor MIMO system using LQR technique. In: International conference on CIDM, v 1, pp 11–21

    Google Scholar 

  21. Maslen EH, Sawicki JT (2007) Mu-Synthesis for magnetic bearings: why use such a complicated tool? In: IMECE 2007, Seattle

    Google Scholar 

  22. Glover K, Doyle JC (1988) State-space formulae for all stabilizing controller that satisfy an H∞ norm bound and relations to risk sensitivity. Syst Control Lett 11:167–172

    Article  MathSciNet  Google Scholar 

  23. Bently DE, Muszynska A (1986) Detection of rotor cracks. In: Fifteenth turbomachinery symposium, Texas, pp 129–139

    Google Scholar 

  24. Bachschmid N, Pennacchi P, Tanzi E (2000) Identification of transverse crack position and depth in rotor systems. Meccanica 35(6):563–582

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the financial support provided to the present research effort by CNPq (574001/2008-5) and FAPEMIG (TEC-APQ-3076-09 / TEC-APQ-02284-15), through the INCT-EIE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Cavalini Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leão, L.S., Sahinkaya, A., Cavalini, A.A., Steffen, V., Sawicki, J.T. (2019). The Influence of the Vibration Suppression on the Rotor Crack Detection Performance. In: Cavalca, K., Weber, H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM. IFToMM 2018. Mechanisms and Machine Science, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-99272-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99272-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99271-6

  • Online ISBN: 978-3-319-99272-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics