Skip to main content

Blade Modal Analysis by Means of Continuous Optical Fiber Sensors

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 62))

Abstract

A new method for blade modal analysis is introduced in this paper by using continuous optical fiber sensors and optical backscatter reflectometer technology. The main advantage is that the sensor is few invasive and does not affect substantially system parameters. Moreover, the optical fiber sensor can be embedded in composite blades, for instance directly woven in carbon fiber fabric. This allows the sensor to be always installed and ready to use for continuous condition monitoring of the blade.

Differently from classical sensors, which can be placed independently from the others, in this case, all the measurement points are placed on the same wire (the fiber itself), characterized by a finite length. Furthermore, due to the physical characteristics of the fiber, some constraints on how the fiber is placed, such as maximum fiber curvature, must be considered. Moreover, strain measurements are collected and precise positioning is required to reconstruct correctly the displacement modal shapes from the strains.

In the literature, many optimal placement methods for sensors are proposed, but they are all referred to independent sensors. An optimal method for optical sensor placing on the blade for modal analysis is first introduced in the paper. Then, numerical and experimental tests performed on some blades are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ewins, D.J.: Modal testing: theory and practice. Wiley, New York (1984)

    Google Scholar 

  2. Friswell, M., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics. Springer, Berlin (1995)

    Book  Google Scholar 

  3. Kuts, V.A., Nikolaev, S.M., Voronov, S.A.: The procedure for subspace identification optimal parameters selection in application to the turbine blade modal analysis. Procedia Eng. 176, 56–65 (2017)

    Article  Google Scholar 

  4. Pennacchi, P., Chatterton, S., Bachschmid, N., Pesatori, E., Turozzi, G.: A model to study the reduction of turbine blade vibration using the snubbing mechanism. Mech. Syst. Signal Process. 25(4), 1260–1275 (2011)

    Article  Google Scholar 

  5. Madhavan, S., Jain, R., Sujatha, C., Sekhar, A.S.: Vibration based damage detection of rotor blades in a gas turbine engine. Eng. Fail. Anal. 46, 26–39 (2014)

    Article  Google Scholar 

  6. Firrone, C.M., Zucca, S.: Underplatform dampers for turbine blades: the effect of damper static balance on the blade dynamics. Mech. Res. Commun. 36(4), 515–522 (2009)

    Article  Google Scholar 

  7. Zhang, D., Hong, J., Ma, Y., Chen, L.: A probability method for prediction on high cycle fatigue of blades caused by aerodynamic loads. Adv. Eng. Softw. 42(12), 1059–1073 (2011)

    Article  Google Scholar 

  8. Ciang, C.-C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. 19(12), 1–20 (2008)

    Article  Google Scholar 

  9. Schroeder, K., Eckel, W., Apitz, J., Lembke, E., Lenschow, G.: A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade. Meas. Sci. Technol. 17(5), 1167–1172 (2006)

    Article  Google Scholar 

  10. Yuan, Y.: Structural dynamics model updating with positive definiteness and no spillover. Math. Probl. Eng. 2014, 1–6 (2014)

    Google Scholar 

  11. Cusano, A., Capoluongo, P., Campopiano, S., Cutolo, A., Giordano, M., Felli, F., Paolozzi, A., Caponero, M.: Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors. IEEE Sens. J. 6(1), 781–800 (2006)

    Google Scholar 

  12. Rapp, S., Kang, L.-H., Mueller, U.C., Hana, J.-H., Baier, H.: Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensor. Smart Mater. Struct. 18, 534–542 (2009)

    Article  Google Scholar 

  13. Kang, L.-H., Kim, D.-K., Han, J.-H.: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J. Sound Vib. 305, 534–542 (2007)

    Article  Google Scholar 

  14. Geng, L., Zhu, X., Zhang, H., Gao, Z., Liu, K.: Optimal placement of FBG sensors for reconstruction of flexible plate structures using modal approach. In: 34th Chinese Control Conference (2015)

    Google Scholar 

  15. Castro-Triguero, R., Murugan, S., Friswell, M.I., Gallego, R.: Optimal sensor placement for structures under parametric uncertainty. In: Proceedings of the 31st IMAC, Garden Grove, CA, USA (2012)

    Google Scholar 

  16. Meo, M., Zumpano, G.: On the optimal sensor placement techniques for a bridge structure. Eng. Struct. 27, 1488–1497 (2005)

    Article  Google Scholar 

  17. Papadimitriou, C., Beck, J.L., Au, S.K.: Entropy-based optimal sensor location for structural model updating. J. Vib. Control 6, 781–800 (2000)

    Article  Google Scholar 

  18. Tong, K.H., Bakhary, N., Kueh, A.B.H., Mohd Yassin, A.Y.: Optimal sensor placement for mode shapes using improved simulated annealing. Smart Struct. Syst. 13(3), 389–406 (2013)

    Article  Google Scholar 

  19. Huang, K.-Y., Carter, G.M.: Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser. IEEE Photonics Technol. Lett. 6(12), 1466–1468 (1994)

    Article  Google Scholar 

  20. Soller, B.J., Gifford, D.K., Wolfe, M.S., Froggatt, M.E.: High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 13, 666–674 (2005)

    Article  Google Scholar 

  21. Rapp, S., Kang, L.-H., Han, J.-H., Mueller, U.C., Baier, H.: Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Mater. Struct. 18(2), 1–12 (2009)

    Article  Google Scholar 

  22. Zhang, H., Lennox, B., Goulding, P.R., Leung, A.Y.T.: Float-encoded genetic algorithm technique for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Mater. Struct. 9(4), 552–557 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pennacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pennacchi, P., Cazzulani, G., Chieppi, M., Colombo, A. (2019). Blade Modal Analysis by Means of Continuous Optical Fiber Sensors. In: Cavalca, K., Weber, H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM . IFToMM 2018. Mechanisms and Machine Science, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-99270-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99270-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99269-3

  • Online ISBN: 978-3-319-99270-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics