Skip to main content

Calculating Rotordynamic Coefficients of Liquid Annular Seals by CFD for Vibration Analysis and Validation at the Test Rig

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 60))

Abstract

This article presents a simulation methodology for calculating rotordynamic coefficients of liquid annular seals using the open source software OpenFOAM. Therefore, stationary fluid solutions for several boundary conditions are generated to represent the rotational shaft speed, the eccentricity and the whirling motion. Analyzing the acting forces in a whirling coordinate frame leads to a simple curve fit to determine the rotordynamic seal coefficients. The CFD approach is validated with an analytical solution and the coefficients of characteristic states are compared to literature results. Finally, the methodology is applied to our test rig’s geometry to calculate its dynamic behavior. The comparison between the simulated and measured behavior shows good agreement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muszynska, A.: Whirl and whiprotor/bearing stability problems. J. Sound Vibr. 110(3), 443–462 (1986)

    Article  Google Scholar 

  2. Black, H.F., Jenssen, D.N.: Black, Jenssen 1969-70 - Dynamic Hybrid Bearing Characteristics. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, vol. 184-14, pp. 92–100. SAGE Publications, Sage UK, London (1969)

    Google Scholar 

  3. Childs, D.W.: Dynamic analysis of turbulent annular seals based on hirs’ lubrication equation. ASME Lubr. Technol. 105, 429–436 (1983)

    Article  Google Scholar 

  4. Muszynska, A.: Improvements in lightly loaded rotor/bearing and rotor/seal models. J. Vibr. Acoust. Stress Reliab. Des. 110, 129–136 (1988)

    Article  Google Scholar 

  5. Dietzen, F.J., Nordmann, R.: Calculating rotordynamic coefficients of seals by finite- difference techniques. Trans. ASME J. Tribol. 109, 388–394 (1987)

    Article  Google Scholar 

  6. Nordmann, R., Dietzen. F.J.: Finite difference analysis of rotordynamic seal coefficients for an eccentric shaft position. In: NASA, Lewis Research Center, Rotordynamic Instability Problems in High-Performance Turbomachinery, Kaiserslautern University, Department of Mechanical Engineering, no. N89-22906, pp. 269–284 (1989)

    Google Scholar 

  7. Kwanka, K.: Dynamic coefficients of stepped labyrinth gas seals. J. Eng. Gas Turbines Power 122, 473–477 (1999)

    Article  Google Scholar 

  8. Kwanka, K., Sobotzik, J., Nordmann, R.: Dynamic coefficients of labyrinth gas seals: a comparison of experimental results and numerical calculations. In: Proceedings of ASME Turbo Expo (2000)

    Google Scholar 

  9. Deckner, M.: Eigenschaften kombinierter Labyrinth - Bürstendichtungen für Turbomaschinen. Doktorarbeit, Technischen Universität München (2009)

    Google Scholar 

  10. Gaszner, M.: Rotordynamische Charakterisierung von Dichtungssystemen zur Anwendung in Kraftwerksdampfturbinen. Ph.D. thesis, Technical University of Munich (2015)

    Google Scholar 

  11. David, J.G.M., Thiago, G.R., Fernando, A.N.C.P.: Identification of rotordynamic seal coefficients by means of impedance matrix and an optimization strategy. In: Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, São Sebastião, SP, Brazil. ABCM (2017)

    Google Scholar 

  12. Wagner, C., Tsunoda, W., Matsushita, O., Berninger, T., Thümmel, T., Rixen, D.: Prediction of instability in rotor-seal systems using forward whirl magnetic bearing excitation. J. Tech. Mech. 37(2–5), 358–366 (2017)

    Google Scholar 

  13. Wagner, C., Tsunoda, W., Berninger, T., Thmmel, T., Rixen, D.: Instability prediction and rotordynamic with seals: simulations based on the bulk-flow theory and experimental measurements. In: XVII International Symposium on Dynamic Problems of Mechanics DINAME, São Sebastião, SP, Brazil. ABCM (2017)

    Google Scholar 

  14. Ha, T.W., Choe, B.S.: Numerical simulation of rotordynamic coefficients for eccentric annular-type-plain-pump seal using CFD analysis. J. Mech. Sci. Technol. 26(4), 1043–1048 (2012)

    Article  Google Scholar 

  15. Kim, S.H., Ha, T.W.: Prediction of leakage and rotordynamic coefficients for the circumferential-groove-pump seal using CFD analysis. J. Mech. Sci. Technol. 30(5), 2037–2043 (2016)

    Article  Google Scholar 

  16. Zutavern, Z.S.: Identification of rotordynamic forces in a flexible rotor system using magnetic bearings identification of rotordynamic forces in a flexible rotor system using magnetic bearings. Ph.D. thesis, Texas AM (2006)

    Google Scholar 

  17. Santos, I.F., Svendsen, P.K.: Noninvasive parameter identification in rotordynamics via fluid film bearings—linking active lubrication and operational modal analysis. J. Eng. Gas Turbines Power 139(6), 062507 (2017)

    Article  Google Scholar 

  18. Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Heidelberg (2002)

    Book  Google Scholar 

  19. Muszynska, A.: Rotordynamics. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  20. Childs, D.W.: Turbomachinery Rotordynamics. Wiley-Interscience, Dallas (1993)

    Google Scholar 

  21. Wagner, C., Thümmel, T., Rixen, D.: Experimental prediciton of instability in rotor seal systems using output only data. In: International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ISROMAC 2017, Maui, Hawaii (2017)

    Google Scholar 

  22. Spurk, J.H., Nuri, A.: Strömungslehre - Einführung in die Theorie der Strömungen (2010)

    Google Scholar 

Download references

Acknowledgments

This project is supported by the Ludwig Bölkow Campus and the Bavarian State. The friendly and effective cooperation between the partners of the research project is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, C., Sinzig, S., Thümmel, T., Rixen, D. (2019). Calculating Rotordynamic Coefficients of Liquid Annular Seals by CFD for Vibration Analysis and Validation at the Test Rig. In: Cavalca, K., Weber, H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM. IFToMM 2018. Mechanisms and Machine Science, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-99262-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99262-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99261-7

  • Online ISBN: 978-3-319-99262-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics